Содержание
- 1 Применение
- 2 Применение
- 3 С помощью тестера
- 4 Схема регулятора мощности на симисторе
- 5 Особенности
- 6 С помощью элемента питания и лампочки
- 7 Разновидности тиристоров
- 8 Описание принципа работы и устройства
- 9 Устройство и принцип действия
- 10 Как избежать ложных срабатываний
- 11 Особенности
- 12 Зачем нужна проверка
- 13 Диммер своими руками, регулятор мощности на симисторе
- 14 Как проверить работоспособность симистора?
Применение
Этот тип полупроводниковых элементов первоначально предназначался для применения в производственной сфере, например, для управления электродвигателями станков или других устройств, где требуется плавная регулировка тока. Впоследствии, когда техническая база позволила существенно уменьшить размеры полупроводников, сфера применения симметричных тринисторов существенно расширилась. Сегодня эти устройства используются не только в промышленном оборудовании, а и во многих бытовых приборах, например:
- зарядные устройства для автомобильных АКБ;
- бытовое компрессорное оборудования;
- различные виды электронагревательных устройств, начиная от электродуховок и заканчивая микроволновками;
- ручные электрические инструменты (шуроповерт, перфоратор и т.д.).
И это далеко не полный перечень.
Одно время были популярны простые электронные устройства, позволяющие плавно регулировать уровень освещения. К сожалению, диммеры на симметричных тринисторах не могут управлять энергосберегающими и светодиодными лампами, поэтому эти приборы сейчас не актуальны.
Применение
Этот тип полупроводниковых элементов первоначально предназначался для применения в производственной сфере, например, для управления электродвигателями станков или других устройств, где требуется плавная регулировка тока. Впоследствии, когда техническая база позволила существенно уменьшить размеры полупроводников, сфера применения симметричных тринисторов существенно расширилась. Сегодня эти устройства используются не только в промышленном оборудовании, а и во многих бытовых приборах, например:
- зарядные устройства для автомобильных АКБ;
- бытовое компрессорное оборудования;
- различные виды электронагревательных устройств, начиная от электродуховок и заканчивая микроволновками;
- ручные электрические инструменты (шуроповерт, перфоратор и т.д.).
И это далеко не полный перечень.
Одно время были популярны простые электронные устройства, позволяющие плавно регулировать уровень освещения. К сожалению, диммеры на симметричных тринисторах не могут управлять энергосберегающими и светодиодными лампами, поэтому эти приборы сейчас не актуальны.
С помощью тестера
Проверка работоспособности симистора мультиметром или тестером основана на знании принципа работы этого устройства. Конечно же, она не даст полной картины состояния детали, так как невозможно определить рабочие характеристики симистора без сборки электрической схемы и проведения дополнительных измерений. Но часто вполне достаточно будет подтвердить или опровергнуть работоспособность полупроводникового перехода и управления им.
Чтобы проверить деталь, необходимо использовать мультиметр в режиме измерения сопротивления, то есть как омметр. Контакты мультиметра присоединяются к рабочим контактам симистора, при этом значение сопротивления должно стремиться к бесконечности, то есть быть очень большим.
После этого соединяется анод с управляющим электродом. Симистор должен открыться и сопротивление должно упасть почти до нуля. Если все так и произошло, скорее всего, симистор работоспособен.
Устройство можно считать неисправным в двух случаях. Если до появления напряжения на контакте управляющего электрода сопротивление симистора ничтожно мало. И второй случай, если при появлении напряжения на контакте управляющего электрода сопротивление прибора не уменьшается.
Схема регулятора мощности на симисторе
Схема симисторного регулятора очень проста, содержит менее десяти распространённых радиодеталей. Готовое устройство практически не нуждается в настройке и после правильного монтажа начинает работать сразу:
Основным регулирующим элементом схемы является симистор BTA16. Этот симистор способен регулировать ток активной нагрузки мощностью до 3 кВт. Если требуется больше, нужно воспользоваться симистором большей мощности, например BTA25 с соответствующим радиатором охлаждения. Также в схеме используются корректирующие радиодетали: два резистора, один подстроечный резистор, один переменный, два конденсатора, один динистор.
Давайте более подробно рассмотрим устройство симисторного регулятора мощности.
Особенности
Чтобы иметь полное представление о симметричных тринисторах, необходимо рассказать про их сильные и слабые стороны. К первым можно отнести следующие факторы:
- относительно невысокая стоимость приборов;
- длительный срок эксплуатации;
- отсутствие механики (то есть подвижных контактов, которые являются источниками помех).
В число недостатков приборов входят следующие особенности:
Необходимость отвода тепла, примерно из расчета 1-1,5 Вт на 1 А, например, при токе 15 А величина мощности рассеивания будет около 10-22 Вт, что потребует соответствующего радиатора. Для удобства крепления к нему у мощных устройств один из выводов имеет резьбу под гайку.
Симистор с креплением под радиатор
- Устройства подвержены влиянию переходных процессов, шумов и помех;
- Не поддерживаются высокие частоты переключения.
По последним двум пунктам необходимо дать небольшое пояснение. В случае высокой скорости коммутации велика вероятность самопроизвольной активации устройства. Помеха в виде броска напряжения также может привести к этому результату. В качестве защиты от помех рекомендуется шунтировать прибор RC цепью.
RC-цепочка для защиты симистора от помех
Помимо этого рекомендуется минимизировать длину проводов ведущих к управляемому выводу, или в качестве альтернативы использовать экранированные проводники. Также практикуется установка шунтирующего резистора между выводом T1 (TE1 или A1) и управляющим электродом.
С помощью элемента питания и лампочки
Существует вариант прозвона симистора простейшим тестером, представляющим собой разорванную однолинейную цепь с источником питания и контрольной лампой. Еще для проверки понадобится дополнительный источник питания. В качестве его может быть использован любой элемент питания, например типа АА с напряжением 1,5 В.
Прозванивать деталь нужно в определенном порядке. В первую очередь необходимо соединить контакты тестера с рабочими контактами симистора. Контрольная лампа при этом гореть не должна.
Затем необходимо подать напряжение между управляющим и рабочим электродами с дополнительного источника питания. На рабочий электрод подается полярность, соответствующая полярности подключенного тестера. При подключении контрольная лампа должна загореться. Если переход симистора настроен на соответствующий ток удержания, то лампа должна гореть и при отключении дополнительного источника питания от управляющего электрода до момента отключения тестера.
Так как прибор должен пропускать ток в обоих направлениях, для надежности можно повторить проверку, изменив полярность подключения тестера к симистору на противоположную. Надо проверить работоспособность прибора при обратном направлении тока через полупроводниковый переход.
Если до подачи напряжения на управляющий электрод контрольная лампа загорелась и продолжает гореть, то деталь неисправна. Если при подаче напряжения контрольная лампа не загорелась, симистор также считается неисправным, и использовать его в дальнейшем нецелесообразно.
Соблюдая эти простейшие правила, можно произвести отбраковку некачественных или отработавших свой ресурс деталей.
Разновидности тиристоров
Тиристорами принято называть группу полупроводниковых приборов (триодов), способных пропускать или не пропускать электрический ток в заданном режиме и в определенные промежутки времени. Так создают условия работоспособности схемы в соответствии с ее функциями.
Управление работой тиристоров осуществляется двумя способами:
- подачей напряжения определенной величины для открытия или закрытия прибора, как в динисторах (диодных тиристорах) – двухэлектродных приборах;
- подачей импульса тока определенной длительности или величины на управляющий электрод, как в тринисторах и симисторах (триодных тиристорах) – трехэлектродных приборах.
По принципу работы эти приборы различаются на три вида.
Динисторы открываются при достижении напряжения определенной величины между катодом и анодом и остаются открытыми до уменьшения напряжения опять же до установленного значения. В открытом состоянии работают по принципу диода, пропуская ток в одном направлении.
Тринисторы открываются при подаче тока на контакт управляющего электрода и остаются открытыми при положительной разности потенциалов между катодом и анодом. То есть они открыты, пока в цепи существует напряжение. Это обеспечивается наличием тока, сила которого не ниже одного из параметров тринистора – тока удержания. В открытом состоянии также работают по принципу диода.
Симисторы – разновидность тринисторов, которые пропускают ток по двум направлениям, находясь в открытом состоянии. По сути, они представляют пятислойный тиристор.
Запираемые тиристоры – тринисторы и симисторы, которые закрываются при подаче на контакт управляющего электрода тока обратной полярности, нежели та, которая вызвала его открытие.
Описание принципа работы и устройства
Основное отличие этих элементов от тиристоров заключается в двунаправленной проводимости электротока. По сути это два тринистора с общим управлением, включенных встречно-параллельно (см. А на рис. 1) .
Рис. 1. Схема на двух тиристорах, как эквивалент симистора, и его условно графическое обозначение
Теперь рассмотрим структуру полупроводника (см. рис. 2.) Как видно из схемы, в устройстве имеется пять переходов, что позволяет организовать две структуры: р1-n2-p2-n3 и р2-n2-p1-n1, которые, по сути, являются двумя встречными тринисторами, подключенными параллельно.
Рис. 2. Структурная схема симистора
Когда на силовом выводе Т1 образуется отрицательная полярность, начинается проявление тринисторного эффекта в р2-n2-p1-n1, а при ее смене – р1-n2-p2-n3.
Заканчивая раздел о принципе работы приведем ВАХ и основные характеристики прибора.
ВАХ симистора
Обозначение:
- А – закрытое состояние.
- В – открытое состояние.
- UDRM (UПР) – максимально допустимый уровень напряжения при прямом включении.
- URRM (UОБ) – максимальный уровень обратного напряжения.
- IDRM (IПР) – допустимый уровень тока прямого включения
- IRRM (IОБ) – допустимый уровень тока обратного включения.
- IН (IУД) – значения тока удержания.
Устройство и принцип действия
Если взять техническое определение, то симистор это симметричный триодный тиристор: именно так расшифровывается эта аббревиатура. Основное отличие симисторов: их принцип работы, а именно способность пропускать ток в обоих направлениях. Это значительно расширяет сферу применения полупроводников, давая новые возможности для создания компактных схем управления.
Симистор представляет собой полупроводниковый прибор с пятью переходами типа n-p-n. Такая конструкция позволяет задействовать устройство в электрических цепях переменного тока. Для более понятного восприятия приведем схему, которой обычно обозначается симистор.
Как видно из предложенной схемы, симистор представляет собой трехполюсное устройство на основе полупроводников. Такой прибор имеет три вывода:
- Выводы Т1 и Т2 являются силовыми электродами и разделяются по полярности подключения на анод и катод;
- Вывод G является управляющим электродом или затвором, позволяет осуществлять управление симистором.
Как уже отмечалось, принцип работы основан на прохождении электрического сигнала в обоих направлениях. Это позволяет использовать симисторы в качестве электронного реле в любых схемах, где нужно регулировать нагрузку или прохождение тока по цепи.
Кратко рассмотрим принцип работы этого универсального устройства. Нормальное положение симистора – закрытое, то есть, ток через него не проходит.
- На управляющий вывод G подается сигнал (напряжение). При этом сигнал может быть любой полярности: как отрицательной, так и положительной;
- При превышении мощности сигнала определенного уровня (в зависимости от конструкции и назначения триака), происходит отпирание симистора. Это означает, что между силовыми электродами Т1 и Т2 начинает протекать ток;
- При изменении полярности управляющего сигнала, электрический ток проходит в обратном направлении.
Такой принцип работы симисторов получил широкое применение во всех приборах, где необходимо регулировать силу тока или напряжение: от зарядных устройств до настройки яркости освещения.
Как избежать ложных срабатываний
Так как для срабатывания симистора достаточно небольшого потенциала, возможны ложные срабатывания. В некоторых случаях они не страшны, но могут привести и к поломке. Поэтому лучше заранее принять меры. Есть несколько способов уменьшить вероятность ложных включений:
- Уменьшить длину линии к затвору, соединять цепь управления — затвор и Т1 — напрямую. Если это невозможно, использовать экранированный кабель или витую пару.
- Снизить чувствительность затвора. Для этого параллельно ставят сопротивление (до 1 кОм).
Практически во всех схемах с симисторами в цепи затвора есть резистор, уменьшающий чувствительность прибора
- Использовать триаки с высокой шумовой устойчивостью. В маркировке у них добавлена буква «Н», от «нечувствительный». Называют их «симисторы ряда «Н». Отличаются они тем, что минимальный ток перехода у них намного выше. Например, симистор BT139-600H имеет ток перехода IGT min =10mA.
Как уже говорили, симистор управляется током. Это дает возможность подключать его напрямую к выходам микросхем. Есть одно ограничение — ток не должен превышать максимально допустимый. Обычно это 25 мА.
Особенности
Чтобы иметь полное представление о симметричных тринисторах, необходимо рассказать про их сильные и слабые стороны. К первым можно отнести следующие факторы:
- относительно невысокая стоимость приборов;
- длительный срок эксплуатации;
- отсутствие механики (то есть подвижных контактов, которые являются источниками помех).
В число недостатков приборов входят следующие особенности:
Необходимость отвода тепла, примерно из расчета 1-1,5 Вт на 1 А, например, при токе 15 А величина мощности рассеивания будет около 10-22 Вт, что потребует соответствующего радиатора. Для удобства крепления к нему у мощных устройств один из выводов имеет резьбу под гайку.
Симистор с креплением под радиатор
- Устройства подвержены влиянию переходных процессов, шумов и помех;
- Не поддерживаются высокие частоты переключения.
По последним двум пунктам необходимо дать небольшое пояснение. В случае высокой скорости коммутации велика вероятность самопроизвольной активации устройства. Помеха в виде броска напряжения также может привести к этому результату. В качестве защиты от помех рекомендуется шунтировать прибор RC цепью.
RC-цепочка для защиты симистора от помех
Помимо этого рекомендуется минимизировать длину проводов ведущих к управляемому выводу, или в качестве альтернативы использовать экранированные проводники. Также практикуется установка шунтирующего резистора между выводом T1 (TE1 или A1) и управляющим электродом.
Зачем нужна проверка
В процессе ремонта или сборки новой схемы невозможно обойтись без электрических деталей. Одной из таких деталей является симистор. Его применяют в схемах устройств сигнализации, световых регуляторах, радиоприборах и многих отраслях техники. Иногда его применяют повторно после демонтажа неработающих схем, и нередко приходится встречать элемент с утраченной от длительного использования или хранения маркировкой. Случается, что и новые детали надо проверить.
Как же быть уверенным, что симистор, установленная в схему, действительно исправен, и в будущем не нужно будет затрачивать много времени на отладку работы собранной системы?
Для этого необходимо знать, как проверить симистор мультиметром или тестером. Но сначала надо понять, что собой представляет данная деталь, и как она работает в электрических схемах.
По сути, симистор является разновидностью тиристора. Название составлено из этих двух слов – «симметричный» и «тиристор».
Диммер своими руками, регулятор мощности на симисторе
Регулятор мощности не имеет дефицитных радиодеталей. Большинство из них можно выковырять из неисправного старого телевизора или любой другой бытовой техники. Например, динистор VD1 можно извлечь из неисправной энергосберегающей лампы.
Детали устройства:
- Симистор BTA16 или подобный
- Резистор 100 Ом 1 Ватт
- Резистор 4,7 килоом
- Подстроечный резистор 2 мегаом
- Переменный резистор 500 килоом
- Конденсатор 0,1 микрофарад 300 Вольт 2 штуки
- Динистор DB3
Все компоненты устройства расположены на печатной плате, выполненной из стеклотекстолита:
Симистор расположен хоть и не на большом, но достаточно эффективном радиаторе охлаждения, выполненном из алюминия:
Большинство элементов находятся в центре печатной платы и располагаются достаточно компактно:
Подстроечный резистор R4 расположен с краю печатной платы:
Напротив расположены две клеммные колодки для подключения в цепь. Чтобы не перепутать правильность подключения устройства, имеются соответствующие надписи:
Основной орган регулировки резистор R3 расположен на металлическом кронштейне, который обеспечивает необходимую надёжность готового изделия:
Готовое устройство получилось достаточно компактным, благодаря чему его можно использовать для регулировки практически любой активной нагрузки: лампы накаливания, нагревательные элементы, тэны:
Настройка симисторного регулятора мощности заключается в регулировке подстроечного резистора R4. При помощи него производится некоторая настройка устройства. Заключается она в следующем. Нужно движок переменного резистора R3 переместить в крайние положение, тем самым убавив регулятор на минимум, и подстраивая подстроечный резистор R4 добиться минимальной мощности отдаваемой в нагрузку. Основная настройка будет завершена. Если устройство собрано правильно, симисторный регулятор сразу начнёт работать.
При настройки устройства не забываем о безопасности.
Внимание! Будьте внимательны, эта самоделка не имеет трансформатора, поэтому некоторые радиодетали могут находиться под высоким потенциалом сети. Будьте осторожны при настройке регулятора мощности.. Как я уже говорил, рассматриваемая самоделка подходит для регулировки мощности устройств, имеющих активное сопротивление
Для регулировки бытовых приборов имеющих реактивное сопротивление, например, таких как пылесос, я рекомендую использовать регулятор мощности на тиристоре, который я использую уже не один год, для регулировки оборотов пылесоса
Как я уже говорил, рассматриваемая самоделка подходит для регулировки мощности устройств, имеющих активное сопротивление. Для регулировки бытовых приборов имеющих реактивное сопротивление, например, таких как пылесос, я рекомендую использовать регулятор мощности на тиристоре, который я использую уже не один год, для регулировки оборотов пылесоса.
На этом я буду завершать своё повествование. Надеюсь, данная статья поможет вам в самостоятельном изготовлении симисторного регулятора мощности. До новых встреч. Всем пока.
Как проверить работоспособность симистора?
В сети можно найти несколько способ, где описан процесс проверки при помощи мультиметра, те, кто описывал их, судя по всему, сами не пробовали ни один из вариантов. Чтобы не вводить в заблуждение, следует сразу заметить, что выполнить тестирование мультиметром не удастся, поскольку не хватит тока для открытия симметричного тринистора. Поэтому, у нас остается два варианта:
- Использовать стрелочный омметр или тестер (их силы тока будет достаточно для срабатывания).
- Собрать специальную схему.
Алгоритм проверки омметром:
- Подключаем щупы прибора к выводам T1 и T2 (A1 и A2).
- Устанавливаем кратность на омметре х1.
- Проводим измерение, положительным результатом будет бесконечное сопротивление, в противном случае деталь «пробита» и от нее можно избавиться.
- Продолжаем тестирование, для этого кратковременно соединяем выводы T2 и G (управляющий). Сопротивление должно упасть примерно до 20-80 Ом.
- Меняем полярность и повторяем тест с пункта 3 по 4.
Если в ходе проверки результат будет таким же, как описано в алгоритме, то с большой вероятностью можно констатировать, что устройство работоспособное.
Заметим, что проверяемую деталь не обязательно демонтировать, достаточно только отключить управляющий вывод (естественно, обесточив предварительно оборудование, где установлена деталь, вызывающая сомнение).
Необходимо заметить, что данным способом не всегда удается достоверно проверку, за исключением тестирования на «пробой», поэтому перейдем ко второму варианту и предложим две схемы для тестирования симметричных тринисторов.
Схему с лампочкой и батарейкой мы приводить не будем в виду того, что таких схем достаточно в сети, если вам интересен этот вариант, можете посмотреть его в публикации о тестировании тринисторов. Приведем пример более действенного устройства.
Схема простого тестера для симисторов
Обозначения:
- Резистор R1 – 51 Ом.
- Конденсаторы C1 и С2 – 1000 мкФ х 16 В.
- Диоды – 1N4007 или аналог, допускается установка диодного моста, например КЦ405.
- Лампочка HL – 12 В, 0,5А.
Можно использовать любой трансформатор с двумя независимыми вторичными обмотками на 12 Вольт.
Алгоритм проверки:
- Устанавливаем переключатели в исходное положение (соответствующее схеме).
- Производим нажатие на SB1, тестируемое устройство открывается, о чем сигнализирует лампочка.
- Жмем SB2, лампа гаснет (устройство закрылось).
- Меняем режим переключателя SA1 и повторяем нажатие на SB1, лампа снова должна зажечься.
- Производим переключение SA2, нажимаем SB1, затем снова меня ем положение SA2 и повторно жмем SB1. Индикатор включится, когда на затвор попадет минус.
Теперь рассмотрим еще одну схему, только универсальную, но также не особо сложную.
Схема для проверки тиристоров и симисторов
Обозначения:
- Резисторы: R1, R2 и R4 – 470 Ом; R3 и R5 – 1 кОм.
- Емкости: С1 и С2 – 100 мкФ х 10 В.
- Диоды: VD1, VD2, VD5 и VD6 – 2N4148; VD2 и VD3 – АЛ307.
В качестве источника питания используется батарейка на 9V, по типу Кроны.
Тестирование тринисторов производится следующим образом:
- Переключатель S3, переводится в положении, как продемонстрировано на схеме (см. рис. 6).
- Кратковременно производим нажатие на кнопку S2, тестируемый элемент откроется, о чем просигнализирует светодиод VD
- Меняем полярность, устанавливая переключатель S3 в среднее положение (отключается питание и гаснет светодиод), потом в нижнее.
- Кратковременно жмем S2, светодиоды не должны загораться.
Если результат будет соответствовать вышеописанному, значит с тестируемым элементом все в порядке.
Теперь рассмотрим, как проверить с помощью собранной схемы симметричные тринисторы:
- Выполняем пункты 1-4.
- Нажимаем кнопку S1- загорается светодиод VD
То есть, при нажатии кнопок S1 или S2 будут загораться светодиоды VD1 или VD4, в зависимости от установленной полярности (положения переключателя S3).