Класс точности

Класс — точность — измерительный прибор

Класс точности измерительного прибора — обобщенная характеристика прибора, определяемая пределами допускаемых основной и дополнительных погрешностей, а также другими свойствами прибора, влияющими на точность, значения которых устанавливаются в стандартах на отдельные виды средств измерений. Класс точности характеризует свойства приборов в отношении точности, но не является непосредственным показателем точности измерений, выполняемых с помощью этих приборов. Например, класс точности вольтметров характеризует пределы допускаемой основной погрешности и допускаемых изменений показаний, вызываемых внешним магнитным полем и отклонениями от нормальных значений температуры, частоты переменного тока и некоторых других влияющих величин.

Класс точности измерительного прибора — это число, которое соответствует наибольшей погрешности, допустимой нормами. Класс точности выражается в процентах от верхнего предела измерения прибора. Например, термометр класса 1 может иметь допустимую погрешность 1 % от верхнего предела шкалы.

Класс точности измерительного прибора определяется наибольшей допустимой погрешностью в процентах величины, соответствующей предельному значению шкалы прибора.

Класс точности измерительных приборов нормируется как обобщенная характеристика средств измерений, определяемая пределами допускаемых основной и дополнительных погрешностей, а также другими свойствами средств измерений, влияющих на их точность, значения которых устанавливаются стандартами на соответствующие виды измерительных приборов.

Классом точности измерительного прибора называется его характеристика, которая определяет степень точности измерения, пределы основной погрешности. Для приборов теплотехнического контроля холодильных установок класс точности численно равен максимальной величине приведенной основной погрешности, выраженной в процентах.

Что характеризует класс точности измерительных приборов.

Приведенная допустимая погрешность определяет класс точности измерительного прибора.

Значение какой величины определяет обозначение класса точности измерительного прибора.

Предельные значения основной и дополнительной погрешностей определяют класс точности измерительного прибора, который задается двумя способами: по величине абсолютной погрешности и по величине наибольшей допустимой основной приведенной погрешности в виде абсолютного числа, совпадающего с пределом допустимой погрешности для конечного значения рабочей части шкалы.

В физико-химических иследованиях первый путь равносилен увеличению класса точности измерительных приборов или переходу к более прецизионным методам измерений. Второй путь представляется более доступным, но он пригоден лишь применительно к измерению экстенсивных величин. Кроме того, для успешного использования этого приема нужно быть уверенным в том, что абсолютная погрешность измерений не коррелирует с массой исследуемого образца и, следовательно, с измеряемым экстенсивным свойством. Так, если абсолютная погрешность измерения энтальпии сгорания для калориметра данной конструкции есть величина приблизительно постоянная для заданного интервала значений 100 — 5000 Дж, с целью снижения относительной погрешности определения следует сжигать навески, обеспечивающие большое тепловыделение.

Максимальная погрешность этих измерений известна и определяется классом точности примененных измерительных приборов.

При различных экспериментальных работах очень важно правильно выбрать класс точности используемых измерительных приборов. Под точностью прибора понимают его свойство, характеризующее степень приближения показаний данного прибора к действительным значениям измеряемой величины

Обычно точность прибора задается классом точности прибора или указывается в его паспорте. Очевидно, что чем точнее прибор, тем меньше его погрешность и выше стоимость.

Допустимое отношение сигнал / помеха зависит также от класса точности измерительного прибора.

А ( / — ошибка измерения, которая определяется классом точности измерительного прибора; ДХ — допустимая погрешность измерения моделируемой величины.

Особо специфическими являются требования, предъявляемые некоторыми стандартами в отношении класса точности измерительных приборов, применяемых при испытаниях.

Электростатические КИП

Эти приборы работают на принципе взаимодействия заряженных электродов, которые разделены диэлектриком. Конструктивно они выглядят практически как плоский конденсатор. При этом, при перемещении подвижной части емкость системы также изменяется.

Наиболее известные из них – это устройства с линейным и поверхностным механизмом. У них немного разный принцип действия. У приборов с поверхностным механизмом емкость изменяется за счет колебаний активной площади электродов

В другом случае важно расстояние между ними

К достоинствам таких устройств относятся небольшая мощность потребления, класс точности ГОСТ, достаточно широкий частотный диапазон и т.д.

Недостатками являются небольшая чувствительность прибора, необходимость экранирования и пробой между электродами.

Для чего используются

Разнообразные виды измерительных трансформаторов встречаются как в небольших приборах размером со спичечный коробок, так и в крупных энергетических установках. Их основное назначение – понижать первичные токи и напряжения до значений, необходимых для измерительных устройств, защитных реле и автоматики. Применение понижающих катушек обеспечивает защиту цепи низшего и высшего ранга, поскольку они разделены между собой.

Понижающие средства разделяют по признакам эксплуатации и предназначены для:

  • измерений. Они передают вторичный ток на приборы;
  • защиты токовых цепей;
  • применения в лабораториях. Такие понижающие средства имеют высокую классность точности;
  • повторного конвертирования, они относятся к промежуточным инструментам.

Измерение

Измерительный трансформатор необходим для понижения высокого тока основного напряжения и передачу его на измерительные устройства. Для подключения стандартных приборов к высоковольтной сети потребовались бы громоздкие установки. Реализовывать инструменты таких размеров экономически не выгодно и не целесообразно.

Использование понижающих трансформаторов позволяет применять обычные устройства измерения в обычном режиме, что расширяет спектр их применения. Благодаря снижению напряжения, они не требуют дополнительных модификаций. Трансформатор отделяет высоковольтное напряжение сети от питающего напряжения приборов, обеспечивая безопасность из использования. От их классности зависит точность учета электрической энергии.

Защита

Кроме питания измерительных приборов понижающие трансформаторы подают напряжение на системы защиты и автоматической блокировки. Поскольку в сетевой электросети происходят перепады и скачки напряжения, которое губительно для высокоточного оборудования цепи.

В энергетических установках оборудование делится на силовое и вторичное, которое контролирует процессы первичной схемы подключения устройств. Высоковольтная аппаратура располагается на открытых площадках или устройствах. Вторичное оборудование находится на релейных планках внутри распределительных шкафов.

Промежуточным элементом передачи информации между силовыми агрегатами и средствами измерения, управления, контроля и защиты являются понижающие или измерительные трансформаторы. Они разделяют первичную и вторичную цепь от пагубного воздействия силовых агрегатов на чувствительные измерительные приборы, а также защищают обслуживающий персонал от повреждений.

Технические характеристики

Согласно документации, на схемах сети вольтметры принято обозначение окружностью с вписанной латинской буквой «V». На русских смехах он может заменяться на русскую букву «В». Более того, первая цифра после буквы в маркировке отображает тип устройства и специфику его использования. Например, В2 — вольтметр для постоянного тока, В3 — для переменного, В4 — для импульсного и т.д.

Вам это будет интересно Разновидности бытовых и промышленных электрических выключателей


Аппарат В3-38 для использования в сетях переменного тока

Оценка характеристик прибора включает в себя следующие компоненты:

  • Диапазон измерений. Он ограничивается наименьшим и наибольшим показателем, который способен изменить аппарат. Современные устройства обладают диапазоном от милливольт до киловольт. Промышленные аналоги же способны измерять как меньшие, так и большие напряжения;
  • Точность измерений. Далеко не каждый домашний тестер отличается повышенной точностью измерений. Как уже было сказано, это зависит от его внутреннего сопротивления. Новые вольтметры при сравнительно небольших размерах обладают маленькими погрешностями измерений;
  • Диапазон частот. Показывает чувствительность прибора к тем или иным сигналам с разными частотами, регистрируемых в сети;
  • Температура и другие факторы. Эти параметры определяют показатели, при которых аппарат обладает минимальной погрешностью измерений, доступной для него;
  • Собственно само внутреннее сопротивление (импеданс). Чем выше этот параметр, тем вольтметр более точен.


Цифровые устройства практически полностью вытеснили аналоговые

Важно! Технические характеристики аналоговых приборов сильно зависят от чувствительности магнитоэлектрического прибора. Чем меньше его ток полного отклонения, тем более высокосопротивительные резисторы можно использовать

6 Перечислить классы точности станков

Ответ:

Н
– нормальной

П
– повышенной

В
– высокой

А
– особо высокой

С
– сверх высокой

Ответ:

Требования к
условиям автоматизированного
производства:

  1. Повышенная
    надежность
  2. Экономичность
  3. Стружкодробление
  4. Быстросменность

Резцы с механическим
креплением получили распространение
к ряду преимуществ:

  1. Нет
    внутренних напряжений после пайки
  2. Экономия
    конструкционной стали
  3. Отсутствие
    затачивания
  4. Возможность
    получения фасонной поверхности
  5. Изношенные
    пластины возвращают на переработку
  6. Быстросменность

Недостатки:

  1. Увеличенные
    габаритные размеры вследствие
    необходимости размещения элементов
    крепления.
  2. Низкая
    жесткость
  3. Сложность
    изготовления державки и элементов
    крепления.

Рисунки:

  1. Прихватом
    – отсутствует поджатие к упорной
    поверхности
  1. С
    качающемся рычагом – обеспечивает
    точное базирование, но не гарантирует
    прижатие к опорной поверхности.
  1. Винтом
    – позволяет закрепить пластинку к
    обоим поверхностям, крепление
    малогабаритное, много времени на смену
    пластины.
  1. Клин
    прихватом – возможно раскрытие стыка.

Ответ:
Погрешности обработки заготовки
формируются на следующих этапах: при
установке заготовки на станок, при
закреплении этой заготовки, а также
при установке заготовки в спец.приспособление
:

Погрешность
установки- величина отклонения положения
заготовки от заданной, в процессе ее
базирования и закрепления в приспособлении.

Погрешность
базирования- предельное поле рассеивания
расстояний между измерительной и
установочной(технологической) базами,
в направлении выдерживаемого размера.

Для
обеспечения обработки заготовки
необходимо осуществить силовое замыкание
ТС — закрепить заготовку. Погрешность
закрепления – предельное поле рассеяния
положений установочной базы относительно
измерительной базы, в направлении
выдерживаемого размера, в результате
приложения к заготовке силы зажима.

Погрешность
положения заготовки в следствии
неточности приспособления: ошибки при
изготовлении и сборке установочных
элементов, их износ, ошибки установки
и фиксировании на станке.

2. В чем выражается эффективность применения станков с чпу?

Ответ:

1)высокая
переналаживаемость (гибкость).

2)использование
оптимальных режимов обработки.

3)Повышение
производительности за счет снижения
вспомогательного времени.

4)Повышение
точности(особенно фасонных).

5)Снижение
квалификации оператора.

Пределы

Как уже говорилось раньше, измерительный прибор, благодаря нормированию уже содержит случайную и систематические ошибки. Но стоит помнить, что они зависят от метода измерения, условий и других факторов. Чтобы значение величины, подлежащей замеру, было на 99% точным, средство измерения должно иметь минимальную неточность. Относительная должна быть примерно на треть или четверть меньше погрешности измерений.

Базовый способ определения погрешности

При установке класса точности в первую очередь нормированию подлежат пределы допустимой основной погрешности, а пределы допускаемой дополнительной погрешности имеют кратное значение от основной. Их пределы выражают в форме абсолютной, относительной и приведенной.

Приведенная погрешность средства измерения – это относительная, выраженная отношением предельно-допустимой абсолютной погрешности к нормирующему показателю. Абсолютная может быть выражена в виде числа или двучлена.

Если класс точности СИ будет определяться через абсолютную, то его обозначают римскими цифрами или буквами латиницы. Чем ближе буква будет к началу алфавита, тем меньше допускаемая абсолютная погрешность такого аппарата.

Класс точности 2,5

Благодаря относительной погрешности можно назначить класс точности двумя способами. В первом случае на шкале будет изображена арабская цифра в кружке, во втором случае дробью, числитель и знаменатель которой сообщают диапазон неточностей.

Основная погрешность может быть только в идеальных лабораторных условиях. В жизни приходится умножать данные на ряд специальных коэффициентов.

Дополнительная случается в результате изменений величин, которые каким-либо образом влияют на измерения (например температура или влажность). Выход за установленные пределы можно выявить, если сложить все дополнительные погрешности.

Случайные ошибки имеют непредсказуемые значения в результате того, что факторы, оказывающие на них влияние постоянно меняются во времени. Для их учета пользуются теорией вероятности из высшей математики и ведут записи происходивших раньше случаев.

Пример расчета погрешности

Статистическая измерительного средства учитывается при измерении какой-либо константы или же редко подверженной изменениям величины.

Динамическая учитывается при замерах величин, которые часто меняют свои значения за небольшой отрезок времени.

8.5 Условия проверки точности

Проверку
точности проводят при соблюдении следующих условий:

а)
счетчик должен быть испытан с установленным кожухом. Все части, требующие
заземления, должны быть заземлены;

б)
до проведения любых испытаний цепи должны быть под напряжением в течение
времени, достаточного для достижения тепловой стабильности;

в)
дополнительно для многофазных счетчиков:

— порядок следования фаз должен соответствовать
указанному на схеме подключений счетчика,

— напряжения и токи должны быть практически
симметричными в соответствии с требованиями таблицы ;

г)
нормальные условия указаны в таблице ;

д)
требования к испытательному оборудованию должны соответствовать МЭК 60736 .

Таблица
7 — Требования к симметрии токов и напряжений

Допускаемые отклонения для счетчиков
классов точности 0,2S и 0,5S

Напряжения
между фазой и нейтралью, а также между любыми двумя фазами не должны
отличаться от соответствующего среднего значения более чем на

± 1 %

Токи в токовых
цепях не должны отличаться от среднего значения более чем на

± 1 %

Значения
сдвига фаз для каждого из этих токов от соответствующих напряжений между
фазой и нейтралью независимо от фазового угла не должны отличаться друг от
друга более чем на

Таблица
8 — Нормальные условия

Нормальное значение

Допускаемое отклонение для счетчиков
классов точности 0,2S и 0,5S

Температура
окружающего воздуха

Нормальная
температура или, если она не установлена, 23 °С1)

± 2°С

Напряжение

Нормальное
напряжение

± 1,0 %

Частота

Номинальная
частота

± 0,3 %

Порядок
следования фаз

L1 — L2 — L3

Несимметрия
напряжения

Все фазы
подключены

Форма кривой

Синусоидальные
напряжения и токи

Коэффициент искажения
менее 2 %

Постоянная
магнитная индукция внешнего происхождения

Магнитная индукция
внешнего происхождения при номинальной частоте

Значение
индукции, которое создает изменение погрешности не более ± 0,1 %, но которое
в любом случае должно быть не более 0,05 мТл2)

Радиочастотные
электромагнитные поля, от 30 кГц до 2 ГГц

Менее 1 В/м

Функционирование
вспомогательных частей

Отсутствие
функционирования вспомогательных частей

Кондуктивные помехи,
наводимые радиочастотными полями

Менее 1 В

1) Если испытания проводят при температуре, отличающейся от нормальной
температуры с учетом допускаемых отклонений, то результаты должны быть скорректированы
введением соответствующего температурного коэффициента счетчика.

2 Испытание состоит:

а) для однофазного
счетчика — из определения погрешностей сначала счетчика, нормально
присоединенного к сети, а затем при изменении на обратное присоединение цепей
тока и напряжения. Половина разности между двумя значениями погрешности
представляет собой значение изменения погрешности. Так как фаза внешнего поля
неизвестна, испытание следует проводить при токе 0,05Iном, и коэффициенте мощности, равном 1, а также при токе 0,1Iном и коэффициенте мощности, равном 0,5;

б) для трехфазного
счетчика — из проведения трех измерений при токе 0,05Iном и коэффициенте мощности, равном 1, после каждого из которых
присоединения к цепям тока и напряжения переключают, создавая сдвиг фаз на
120°, но без изменения порядка следования фаз. Наибольшую разность между
значениями каждой из погрешностей, определенных таким образом, и их средним
значением принимают за значение изменения погрешности.

Классификация счетчика по фазности

В зависимости от того, какой тип электросети проведен в доме (с однофазным напряжением или трехфазным), необходимо приобретать соответствующий счетчик:

  1. Однофазный прибор учета — устанавливается в однофазную (двухпроводную) сеть с напряжением 220 В. Такие электросети в основном проведены в квартирах, индивидуальных жилых домах, небольших магазинах, офисах.
  2. Трехфазный прибор учета — устанавливается в трехфазную сеть с напряжением от 380 В. Такие электросети проводятся в больших коттеджах, на промышленных объектах, в крупных магазинах, ресторанах, административных зданиях и складах, одним словом — на крупных объектах.

Вопрос выбора

Для установки электросчётчика в частном доме или квартире подойдут модели, которые имеют класс не менее 2.

Кроме этого, отправляясь за электрическим счётчиком в магазин, следует точно знать следующие характеристики:

  1. Фазность электрической сети. Если электрическая сеть, которая подведена к счётчику, является однофазной, то устройство должно быть также для однофазной сети. Трёхфазный электросчётчик также можно установить для подсчёта использования электроэнергии, но такие устройства, как правило, имеют более высокую стоимость. Когда счётчик устанавливается для измерения трёхфазного тока, то на нём обязательно указывается соответствующая надпись. Для подсчёта трёхфазного тока однофазные приборы не используются.
  2. Нагрузка, при которой будет эксплуатироваться данное устройство. В зависимости от максимальной нагрузки, которая будет подключена к устройству подсчёта электроэнергии, выбирается модель, на корпусе которой обозначается такой показатель. Для стандартной нагрузки, которая используется в частном доме, применяются модели электросчётчиков рассчитанных на максимальный ток – 60 А. Если планируется подключать мощные отопительные электрические котлы, то электросчётчик выбирается с показателем не менее – 100 А.
  3. Если поставщик электроэнергии может продавать электроэнергию по 2 тарифам, то тарифность счётчика также учитывается при покупке. Значительно экономить на оплате электричества позволяет двухтарифные устройства. При использовании электроэнергии в ночное время такой счётчик будет регистрировать расход отдельно. Если поставщик электроэнергии позволяет производить такую оплату, то установка многотарифного счётчика позволит использовать электричество более рационально.
  4. Способ крепления. Позволяет установить прибор в уже имеющийся короб, или на место прибора который был установлен ранее.

Какие бывают классы точности

Погрешность электросчетчика определяется его конструктивной особенностью и регламентируется заводом-изготовителем. На заводе производится тарировка, после чего показания заносятся в паспорт изделия. Законодательно установлены сроки эксплуатации и поверки счетчиков в зависимости от конструктивной особенности.

В таблице снизу приведены среднестатистические данные о сроках эксплуатации.

По истечении этого срока эксплуатация запрещена, следует заменить прибор или отправить его на поверку. Сейчас за сроками должны следить собственники. Если не соблюдать указанный норматив, то на владельца могут наложить штраф.

Ответственность за пользование просроченным электросчетчиком лежит на владельце. Для проведения поверки устройство демонтируется и передается в специализированную лабораторию, где производят комплексную экспертизу и проверяют погрешность измерения.

Если прибор учета отвечает заводским показателям, то работники лаборатории дают заключение о пригодности устройство к дальнейшей эксплуатации, о чем делается запись в паспорте изделия. Неисправный электросчетчик ремонтируют или списывают.

Итак, по ПУЭ максимально допустимая погрешность индукционных приборов учета электроэнергии равна 2. Однако, по закону на 2020 год с 1 июля должны будут устанавливаться «умные счетчики» за счет государства. Исходя из этого следует, что владельцу не нужно будет заниматься приобретением электросчетчика, и знать какая у него погрешность 1 или 2, что лучше. Этим будут заниматься организации, производящие замену устройств учета.

Учет электроэнергии обязателен для всех потребителей. Так, для юридических лиц, физических лиц с трёхфазным вводом и прочих крупных потребителей электросчетчики трехфазного тока. Если у него имеются такие электроустановки.

В зависимости от мощности потребления используют электросчетчики с классом точности:

  1. Для хозяйствующих субъектов с присоединением к сети 35 кВ и мощностью до 670 кВт устанавливаются счетчик электроэнергии с погрешностью не менее 1,0.
  2. Для подсоединения нагрузки с напряжением 110 кВ и более, класс точности счетчика электроэнергии должен быть 0,5S.
  3. Учет потребляемой электроэнергии при нагрузке выше 670 кВт, применяются устройства с точностью 0,5S и позволяющие фиксировать почасовые нагрузки, а также иметь возможность интегрироваться в систему учета и памяти, способную хранить данные до 90 суток.

Все электросчетчики, применяемые для коммерческого учета на высоковольтных линиях, не могут быть прямого включения. Для измерения потребляемой электроэнергии в этом случае, а также при потреблении токов свыше 100А применяются счетчики трансформаторного включения.

При напряжении подключения 110 кВ и более, а также при мощности свыше 670 кВт применяются приборы учета с классом точности 0,5 и 0,5S. Потребителю необходимо знать, какой класс точности должен быть у счетчика и 0,5 и 0,5S в чем разница между этими показателями.

Основные отличия заключаются в следующем:

  • Погрешность 0,5 не позволяет учитывать всю электроэнергию, что приводит к большему объему недоучтенной электроэнергии, по сравнению с 0,5S.
  • Разница в показаниях составляет 0,75%.
  • Счетчики с погрешностью 0,5 не проходят поверку и бракуются.
  • При выходе устройства из строя или окончании срока эксплуатации обязательна замена таких счетчиков на приборы с погрешностью 0,5S.

ВАЖНО! Показания на приборе зависят от класса точности электросчетчика и трансформатора тока

8.6 Интерпретация результатов испытаний

Из-за
недостоверности измерений и других причин, оказывающих влияние на результаты
измерений, некоторые результаты испытаний могут оказаться вне допустимых
пределов, приведенных в таблицах и . Однако если путем перемещения оси абсцисс
параллельно самой себе на значение не более установленного в таблице , все
результаты испытаний приходят в соответствие с пределами, установленными в
таблицах
и ,
счетчик считают годным.

Таблица
9 — Интерпретация результатов испытаний

0,2 S

0,5 S

Допускаемое
перемещение оси абсцисс, %

0,1

0,2

9
Дополнительные требования

Дополнительно
к требованиям, установленным в
ГОСТ
Р 52320 (раздел 9), счетчики должны удовлетворять следующим требованиям.

Виды электросчётчиков

Индукционные

Индукционные – представляют собой знакомое практически каждому устройство. Их характерной особенностью является постоянно вращающееся колёсико за прозрачным стеклом. Оно крутиться с разной скоростью и зависит это от расхода электричества. Чем он выше, тем быстрее раскручивается колёсико.

Показания можно увидеть на специальных барабанах с изображёнными цифрами. Принцип работы у него следующий. В конструкции есть 2 катушки. Одна из них катушка напряжения. Она ограничивает переменный ток, а также служит неким барьером для различного рода помех.

Ещё её функция заключается в создании магнитного потока, который эквивалентен проходящему через неё напряжению. Вторая катушка называется токовой. Она также производит магнитный поток, но только он соразмерен силе тока.

Оба магнитных потока в итоге проникают через специальный алюминиевый диск. Поскольку они имеют параболическую траекторию, то проходят сквозь вышеупомянутую преграду 2 раза. За счёт этого и возникают силы, которые заставляют алюминиевый диск крутиться.

Вследствие этого ось, на которой он расположен, оказывает действие на те самые барабаны с цифрами посредством зубчато-винтовой передачи. Таким образом, показания зависят от скорости вращения диска из алюминия, а она, в свою очередь, зависит от магнитных потоков, которые создаются катушками.

В итоге, чем выше напряжения в электросети, тем больше будут цифры на барабанах. Такие счётчики достаточно широко распространены даже в век высоких технологий.

К их достоинствам можно отнести:

  1. Высокую надёжность.
  2. Долговечность.
  3. Абсолютную независимость от случайных перепадов напряжения.
  4. Невысокую цену.

Однако есть у них несколько недостатков:

  1. Низкий класс точности.
  2. Фактическое отсутствие какой-либо защиты от хищения электроэнергии.
  3. Большой расход электричества самим счётчиком.
  4. Неизбежный рост погрешности при малых нагрузках.
  5. Большие габаритные размеры.

Электронные

Электронные – в наши времена более выгодны и используются несколько чаще. Они превосходят индукционные по классу точности и дают возможность учитывать такой показатель, как многотарифность.

Такой тип счётчика работает на основе преобразования аналогового сигнала, который поступает с датчика электрического тока. Прибор превращает его в цифровой код, который по числовому показателю равен потребляемой энергии. Затем полученный код расшифровывается в микроконтроллере и после этого на цифровом экране можно увидеть показания.

Счётчик электрического типа обладает гораздо большим числом достоинств, чем индукционный собрат, к ним относят:

  1. Высокий класс точности.
  2. Многотарифность.
  3. Измерение расхода всех типов электричества.
  4. Хранение всех показаний.
  5. Легкодоступность информации.
  6. При попытке хищения происходит фиксация несанкционированного доступа.
  7. Возможность снимать показания с прибора дистанционно.
  8. Небольшие габаритные размеры.

К малому числу недостатков относятся:

  1. Высокая чувствительность устройства к перепадам напряжения.
  2. Относительно высокая стоимость
  3. Сложность при обслуживании и ремонте.
Оцените статью
stroycollege12.ru
Добавить комментарий

Adblock
detector