Геометрические фигуры. квадрат

Геометрия квадрата

Квадрат — четыре точки, четыре стороны, четыре прямых угла. Диагонали четырехугольника равны, пересекаются под углом 90 градусов, в точке пересечения делятся пополам и являются биссектрисами углов фигуры. Кроме того, диагонали разделяют фигуру на равнобедренные прямоугольные треугольники, что делает квадрат королем симметрии. Квадрат — частный случай параллелограмма, ромба и прямоугольника.


В евклидовой геометрии все углы квадрата равны 90 градусам, а сумма углов фигуры составляет 360 градусов. Евклидова геометрия — это теория о фигурах, построенных на плоскости. Если квадрат построить на сфере, то каждый его угол будет равен 120 градусам, а если на гиперболической поверхности — 72 градуса. Таким образом, в геометриях Римана и Лобачевского квадрат, как фигура с прямыми углами, не существует, и представляет собой равносторонний четырехугольник.

Единичный квадрат

Единичный квадрат — это плоский квадрат, сторона которого равна единичному отрезку. Такой четырехугольник используется для измерения площади других геометрических фигур: измерение размеров сводится к задаче вычисления количества единичных квадратов, которые могут замостить плоскость, ограниченную сторонами фигуры. Известно, что такой метод определения площадей использовали древние вавилоняне, а вот отец геометрии Евклид замерял фигуры относительно друг друга. До открытия интегрального исчисления нахождение площади фигур при помощи единичного квадрата называлось квадратурой.

Литература

  • Белозеров С. Е. Пять знаменитых задач древности. История и современная теория. — Ростов: изд-во Ростовского университета, 1975. — 320 с.
  • Перельман Я. И. Квадратура круга. Л.: Дом занимательной науки, 1941.
  • Рудио Ф. О квадратуре круга (Архимед, Гюйгенс, Ламберт, Лежандр). — Изд. 3-е. — М.—Л.: ОГИЗ, 1936. — 237 с. — (Классики естествознания).
  • Хал Хеллман. Великие противостояния в науке. Десять самых захватывающих диспутов. Глава 2. Валлис против Гоббса: Квадратура круга = Great Feuds in Science: Ten of the Liveliest Disputes Ever. — М.: «Диалектика», 2007. — 320 с. — ISBN 0-471-35066-4.
  • Чистяков В. Д. Три знаменитые задачи древности. — М.: Гос. уч.-пед. изд-во Министерства просвещения РСФСР, 1963. — 96 с..
  • Щетников А. И. Как были найдены некоторые решения трёх классических задач древности? // Математическое образование. — 2008. — № 4 (48). — С. 3—15.

Онлайн калькулятор

Через длины оснований и высоту

Чему равна площадь трапеции, если: основание a = основание b = высота h = Ответ: S = ед.²Округление ответа: до целогодо десятыхдо сотыхдо тысячныхдо 4 знаковдо 5 знаковдо 6 знаковдо 7 знаковдо 8 знаковдо 9 знаковдо 10 знаковбез округления*

Чему равна площадь трапеции если известны основания a и b, а также высота h?

S = ½ ⋅ (a + b) ⋅ h

Пример

Если у трапеции основание a = 3 см, основание b = 6 см, а высота h = 4 см, то её площадь:

S = ½ ⋅ (3 + 6) ⋅ 4 = 36 / 2 = 18 см²

Через среднюю линию и высоту

Чему равна площадь трапеции, если: средняя линия m = высота h = Ответ: S = ед.²Округление ответа: до целогодо десятыхдо сотыхдо тысячныхдо 4 знаковдо 5 знаковдо 6 знаковдо 7 знаковдо 8 знаковдо 9 знаковдо 10 знаковбез округления*

Чему равна площадь трапеции если известны средняя линия m и высота h?

S = m ⋅ h

Пример

Если у трапеции средняя линия m = 6 см, а высота h = 4 см, то её площадь:

S = 6 ⋅ 4 = 24 см²

Через длины сторон и оснований

Чему равна площадь трапеции, если: основание a = основание b = сторона c = сторона d = Ответ: S = ед.²Округление ответа: до целогодо десятыхдо сотыхдо тысячныхдо 4 знаковдо 5 знаковдо 6 знаковдо 7 знаковдо 8 знаковдо 9 знаковдо 10 знаковбез округления*

Чему равна площадь трапеции если известны основания a и b, а также стороны c и d?

Пример

Если у трапеции основание a = 2 см, основание b = 6 см, сторона c = 4 см, а сторона d = 7 см, то её площадь:

S13.555 см²

Через диагонали и угол между ними

Чему равна площадь трапеции, если: диагональ d1 = диагональ d2 = угол α = Ответ: S = ед.²Округление ответа: до целогодо десятыхдо сотыхдо тысячныхдо 4 знаковдо 5 знаковдо 6 знаковдо 7 знаковдо 8 знаковдо 9 знаковдо 10 знаковбез округления*


Чему равна площадь трапеции если известны диагонали d1 и d2 и угол между ними α?

S = ½ ⋅ d1 ⋅ d2 ⋅ sin(α)

Пример

Если у трапеции одна диагональ d1 = 5 см, другая диагональ d2 = 7 см, а угол между ними ∠α = 30°, то её площадь:

S = ½ ⋅ 5 ⋅ 7 ⋅ sin (30) = 17.5 ⋅ 0.5= 8.75 см²

Площадь равнобедренной трапеции

Через среднюю линию, боковую сторону и угол при основании

Чему равна площадь трапеции, если: средняя линия m = сторона c = угол α = Ответ: S = ед.²Округление ответа: до целогодо десятыхдо сотыхдо тысячныхдо 4 знаковдо 5 знаковдо 6 знаковдо 7 знаковдо 8 знаковдо 9 знаковдо 10 знаковбез округления*

Чему равна площадь равнобедренной трапеции если средняя линия m, боковая сторона с, a угол при основании α?

S = m ⋅ c ⋅ sin(α)

Пример

Если у равнобедренной трапеции средняя линия m = 6 см, сторона c = 4 см, а угол при основании ∠α = 30°, то её площадь:

S = 6 ⋅ 4 ⋅ sin (30) = 24 ⋅ 0.5 = 12 см²

Через радиус вписанной окружности

Чему равна площадь трапеции, если: радиус r = угол α = Ответ: S = ед.²Округление ответа: до целогодо десятыхдо сотыхдо тысячныхдо 4 знаковдо 5 знаковдо 6 знаковдо 7 знаковдо 8 знаковдо 9 знаковдо 10 знаковбез округления*

Чему равна площадь равнобедренной трапеции если радиус вписанной окружности r, a угол при основании α?

Пример

Если у равнобедренной трапеции радиус вписанной окружности r = 5 см, а угол при основании ∠α = 30°, то её площадь:

S = 4 ⋅ 5² / sin (30) = 100 / 0.5 = 200 см²

Приближённое решение

Пусть a{\displaystyle a} — сторона квадрата, D{\displaystyle D} — диагональ квадрата, r{\displaystyle r} — радиус круга. Равенство площадей квадрата и круга: πr2=a2{\displaystyle \pi r^{2}=a^{2}}. По теореме Пифагора D2=a2+a2{\displaystyle D^{2}=a^{2}+a^{2}}, откуда D=a2{\displaystyle D=a{\sqrt {2}}}, a=D2{\displaystyle a={\frac {D}{\sqrt {2}}}}. Подставив a{\displaystyle a} в равенство, получим πr2=(D2)2{\displaystyle \pi r^{2}=\left({\frac {D}{\sqrt {2}}}\right)^{2}}. Выразив D{\displaystyle D}, получим D=r2π≈2,506628275⋅r{\displaystyle D=r{\sqrt {2\pi }}\approx 2{,}506628275\cdot r}. Диагональ искомого квадрата приближённо равна 2,5 радиусам круга. Построив квадрат со стороной указанной длины и взяв половину его диагонали, получим сторону искомого приближённого квадрата. При данном построении погрешность составит 0,016592653. При исходном радиусе в 1 метр вы получите «недостачу по площади» в размере чуть более 10 спичечных коробков.

Прямоугольник

Прямоугольник – это первая фигура школьного курса математики, которая имеет диагональ. Так же, как диагональ имеет и квадрат.

Диагональ прямоугольника или квадрата всегда:

  • Делит фигуру на две равных прямоугольных треугольника.
  • В полученных треугольниках диагональ будет являться гипотенузой
  • Диагональ будет равняться корню квадратному из суммы квадратов катетов согласно теореме Пифагора

Диагоналей в любом четырехугольнике 2, а в квадрате и прямоугольнике обе диагонали равны между собой.

При этом правило не касается других четырехугольников. Например, диагонали параллелограмма всегда неравны между собой. Запомните, если перед вами произвольный четырехугольник использовать утверждение о равенстве диагоналей без доказательства нельзя. Любое утверждение в геометрии, кроме аксиом должно быть доказано.

Кроме прямоугольника и квадрата равными диагоналями обладает ромб. При этом диагонали ромба перпендикулярны друг другу и, так же, как и диагонали квадрата и прямоугольника, точкой пересечения делятся пополам.

Вычисление диагонали квадрата по известной стороне


Самым простым способом является вычисление диагонали, если известна сторона квадрата. Здесь действует широко известная теорема Пифагора для прямоугольных треугольников. Запишем эту формулу: c^2 = a^2+b^2.

Отметим, что в нашем случае диагональ квадрата есть гипотенуза треугольника с равными катетами. Перепишем формулу исходя из наших условий: d^2 = a^2+a^2. Преобразуем, получим: d^2 = 2*a^2. Следующим шагом извлечём квадратный корень, получится: d = rad2*a. Это и есть наша конечная формула.

Рассмотрим вычисление на примере. Пусть a = 64. Подставим наше значение в формулу. Получим d = 64*rad2. Это и есть ответ.

Свойства квадрата.

— у всех 4-х сторон квадрата одинаковая длина, т.е. стороны квадрата равны:

AB = BC = CD = AD

— противолежащие стороны квадрата параллельны:

AB||CD, BC||AD

— каждый угол квадрата прямой:

∠ABC = ∠BCD = ∠CDA = ∠DAB = 90°

— сумма углов квадрата равна 360°:

∠ABC + ∠BCD + ∠CDA + ∠DAB = 360°

— каждая диагональ квадрата имеет такую же длину, как и другая:

AC = BD

— каждая из диагоналей квадрата делит квадрат на 2 одинаковые симметричные фигуры.

— угол пересечения диагоналей квадрата равен 90°, пересекая друг друга, диагонали делятся на две равные части:

AC┴BD;AO = BO = CO = DO = d/2

— точку пересечения диагоналей называют центр квадрата и она оказывается центром вписанной и описанной окружностей.


— все диагонали делят угол квадрата на две равные части, таким образом, они оказываются биссектрисами углов квадрата:

ΔABC = ΔADC = ΔBAD = ΔBCD

∠ACB = ∠ACD = ∠BDC = ∠BDA = ∠CAB = ∠CAD = ∠DBC = ∠DBA = 45°

— диагонали делят квадрат на 4 одинаковых треугольника, кроме того, полученные  треугольники в одно время и равнобедренные и прямоугольные:

ΔAOB = ΔBOC = ΔCOD = ΔDOA

Примеры из реальной жизни

Кафель

Допустим, мы хотим отделать стену кафелем. Чаще всего кафель имеет именно квадратную форму, и для того чтобы выяснить расход отделочного материала, нам понадобится узнать площадь поверхности и размер одного элемента. Пусть нам требуется замостить кафелем пол в ванной комнате, площадь которого составляет 3 квадратных метра, а для отделки мы выбрали кафельные плитки со стороной 15 см. Для корректного расчета представим сторону в метрах, то есть a = 0,15. Площадь одной плитки составит:

S = 0,0225.

Тогда для отделки пола нам понадобится 3/0,0225 = 133 кафельных плитки.

Школьная задача

В задаче по геометрии требуется определить площадь квадрата, длина диагонали которого составляет 13 см. При решении такой задачи вручную нам потребовалось бы использовать теорему Пифагора для вычисления стороны. Мы можем сэкономить время и просто ввести длину диагонали в форму калькулятора и получить ответ, равный:

S = 84,5

Сторона квадрата при этом равна 9,19 см, что соответствует теореме Пифагора. Так как все стороны квадрата равны, мы не можем получить пифагоровы тройки (то есть натуральные числа) при вычислении параметров фигуры.

Неразрешимость

Если принять за единицу измерения радиус круга и обозначить x длину стороны искомого квадрата, то задача сводится к решению уравнения: x2=π{\displaystyle x^{2}=\pi }, откуда: x=π{\displaystyle x={\sqrt {\pi }}}. С помощью циркуля и линейки можно выполнить все 4 арифметических действия и извлечение квадратного корня; отсюда следует, что квадратура круга возможна в том и только в том случае, если с помощью конечного числа таких действий можно построить отрезок длины π{\displaystyle \pi }. Таким образом, неразрешимость этой задачи следует из неалгебраичности (трансцендентности) числа π{\displaystyle \pi }, которая была доказана в 1882 году Линдеманом.

Однако эту неразрешимость следует понимать как неразрешимость при использовании только циркуля и линейки. Задача о квадратуре круга становится разрешимой, если, кроме циркуля и линейки, использовать другие средства (например, квадратрису). Простейший механический способ предложил Леонардо да Винчи. Изготовим круговой цилиндр с радиусом основания R{\displaystyle R} и высотой R2{\displaystyle {\frac {R}{2}}}, намажем чернилами боковую поверхность этого цилиндра и прокатим его по плоскости. За один полный оборот цилиндр отпечатает на плоскости прямоугольник площадью πR2{\displaystyle \pi R^{2}}. Располагая таким прямоугольником, уже несложно построить равновеликий ему квадрат.

Из теоремы Линдемана также следует, что осуществить квадратуру круга нельзя не только циркулем и линейкой, то есть с помощью прямых и окружностей, но и с помощью любых других алгебраических кривых и поверхностей (например, эллипсов, гипербол, кубических парабол и т. п.).

Площадь квадрата

Формула площади квадрата — одна из самых простых формул, которые мы знаем со школьной скамьи. Для вычисления нам необходимо возвести в квадрат сторону фигуры:

S = a2.

В школьных задачах может потребоваться отыскать размер квадрата, зная только его диагональ. Программный код калькулятора использует известную зависимость между стороной и диагональю квадрата, которая выводится из теоремы Пифагора. Так как диагонали разделяют квадрат на равнобедренные прямоугольные треугольники, то их катеты равны, поэтому:

d2 = a2 + a2

Для единичного квадрата диагональ соотносится со стороной как d = 1,4142a. Вы можете вычислить площадь фигуры, зная только одну переменную на выбор:

  • длину стороны;
  • длину диагонали.

Рассмотрим пару примеров.

История

Из формулировки проблемы видно, что она тесно связана с практически важной задачей нахождения площади круга. В древнем Египте уже знали, что эта площадь S{\displaystyle S} пропорциональна квадрату диаметра круга d.{\displaystyle d.} В папирусе Ринда для вычислений используется формула

S=(89d)2.{\displaystyle S=\left({\frac {8}{9}}d\right)^{2}.}

Из этой формулы видно, что площадь круга диаметра d{\displaystyle d} считалась равной площади квадрата со стороной 89d.{\displaystyle {\frac {8}{9}}d.} В современной терминологии это значит, что египтяне принимали значение π{\displaystyle \pi } равным (169)2≈3,16.{\displaystyle \left({\frac {16}{9}}\right)^{2}\approx 3{,}16.}

Древнегреческие математики своей задачей считали не вычисление, а точное построение искомого квадрата («квадратуру»), причём, в соответствии с тогдашними принципами, только с помощью циркуля и линейки. Проблемой занимались крупнейшие античные учёные — Анаксагор, Антифон, Брисон Гераклейский, Архимед, Спор и другие.

Гиппократ Хиосский в IV веке до н. э. первым обнаружил, что некоторые криволинейные фигуры (гиппократовы луночки) допускают точную квадратуру. Расширить класс таких фигур античным математикам не удалось. По другому пути пошёл его современник Динострат, показавший, что квадратуру круга можно строго выполнить с помощью особой кривой — квадратрисы.

В «Началах» Евклида (III век до н. э.) вопрос о площади круга не затрагивается. Важным этапом в исследовании проблемы стало сочинение Архимеда «Измерение круга», в котором впервые строго доказана теорема: площадь круга равна площади прямоугольного треугольника, у которого один катет равен радиусу круга, а другой — длине окружности. Это означало, что если удастся осуществить «спрямление окружности», то есть построить отрезок такой же длины, то проблема будет полностью решена. Архимед также дал оценку числа π{\displaystyle \pi }:

22371<π<227;{\displaystyle {\frac {223}{71}}<\pi <{\frac {22}{7}};\quad } в десятичной записи: 3,1408<π<3,1429.{\displaystyle 3{,}1408<\pi <3{,}1429.}

Дальнейшие исследования индийских, исламских и европейских математиков по этой теме долгое время касались в основном уточнения значения числа π{\displaystyle \pi } и подбора приближённых формул для квадратуры круга. В средневековой Европе задачей занимались Фибоначчи, Николай Кузанский и Леонардо да Винчи. Позднее обширные исследования опубликовали Кеплер и Гюйгенс. Постепенно укреплялась уверенность в том, что число π{\displaystyle \pi } не может быть точно выражено с помощью конечного числа арифметических операций (включая извлечение корня), отсюда вытекала бы невозможность квадратуры круга. В 1775 году Парижская академия наук (за которой последовал ряд других академий мира) постановила не принимать к рассмотрению попытки квадратуры круга и прочих неразрешимых задач.

Иррациональность числа π{\displaystyle \pi } была доказана Ламбертом в 1766 году в работе «Предварительные сведения для ищущих квадратуру и спрямление круга». Труд Ламберта содержал пробелы, вскоре исправленные Лежандром (1794 год). Окончательное доказательство неразрешимости квадратуры круга дал в 1882 году Линдеман (см. следующий раздел). Математики также предложили множество практически полезных способов приближённой квадратуры круга с хорошей точностью.


С этим читают