Содержание
- 1 Расчет воздуховодов
- 2 Гибкие алюминиевые воздуховоды
- 3 Расчет воздуховодов
- 4 Исходные данные для вычислений
- 5 Расчет системы вентиляции
- 6 Основные формулы аэродинамического расчета
- 7 Особенности прямоугольного воздуховода
- 8 Некоторые экономические аспекты подбора размеров воздухопровода
- 9 Общие сведения
- 10 Этап первый
- 11 Особенности аэродинамического расчёта
Расчет воздуховодов
Расчет воздуховодов или проектирование систем вентиляции
В создании оптимального микроклимата помещений наиболее важную роль играет вентиляция. Именно она в значительной степени обеспечивает уют и гарантирует здоровье находящихся в помещении людей. Созданная система вентиляции позволяет избавиться от множества проблем, возникающих в закрытом помещении: от загрязнения воздуха парами, вредными газами, пылью органического и неорганического происхождения, избыточным теплом. Однако предпосылки хорошей работы вентиляции и качественного воздухообмена закладываются задолго до сдачи объекта в эксплуатацию, а точнее, на стадии создания проекта вентиляции. Производительность систем вентиляции зависит от размеров воздуховодов, мощности вентиляторов, скорости движения воздуха и других параметров будущей магистрали. Для проектирования системы вентиляции необходимо осуществить большое количество инженерных расчетов, которые учтут не только площадь помещения, высоту его перекрытий, но и множество других нюансов.
Расчет площади сечения воздуховодов
После того, как вы определили производительность вентиляции, можно переходить к расчету размеров (площади сечения) воздуховодов.
Расчет площади воздуховодов определяется по данным о необходимом потоке, подаваемом в помещение и по максимально допустимой скорости потока воздуха в канале. Если допустимая скорость потока будет выше нормы, то это приведет к потере давления на местные сопротивления, а также по длине, что повлечет за собой увеличение затрат электроэнергии. Также правильный расчет площади сечения воздуховодов необходим для того, чтобы уровень аэродинамического шума и вибрация не превышали норму.
При расчете нужно учитывать, что если вы выберете большую площадь сечения воздуховода, то скорость воздушного потока снизится, что положительно повлияет и на снижение аэродинамического шума, а также на затраты по электроэнергии. Но нужно знать, что в этом случае стоимость самого воздуховода будет выше. Однако использовать «тихие» низкоскоростные воздуховоды большого сечения не всегда возможно, так как их сложно разместить в запотолочном пространстве. Уменьшить высоту запотолочного пространства позволяет применение прямоугольных воздуховодов, которые при одинаковой площади сечения имеют меньшую высоту, чем круглые (например, круглый воздуховод диаметром 160 мм имеет такую же площадь сечения, как и прямоугольный размером 200×100 мм). В то же время монтировать сеть из круглых гибких воздуховодов проще и быстрее.
Поэтому при выборе воздуховодов обычно подбирают вариант, наиболее подходящий и по удобству монтажа, и по экономической целесообразности.
Площадь сечения воздуховода определяется по формуле:
Sс — расчетная площадь сечения воздуховода, см²;
L — расход воздуха через воздуховод, м³/ч;
V — скорость воздуха в воздуховоде, м/с;
2,778 — коэффициент для согласования различных размерностей (часы и секунды, метры и сантиметры).
Итоговый результат мы получаем в квадратных сантиметрах, поскольку в таких единицах измерения он более удобен для восприятия.
Фактическая площадь сечения воздуховода определяется по формуле:
S = π * D² / 400 — для круглых воздуховодов,
S = A * B / 100 — для прямоугольных воздуховодов, где
S — фактическая площадь сечения воздуховода, см²;
D — диаметр круглого воздуховода, мм;
A и B — ширина и высота прямоугольного воздуховода, мм.
Расчет сопротивления сети воздуховодов
После того как вы рассчитали площадь сечения воздуховодов, необходимо определить потери давления в вентиляционной сети (сопротивление водоотводной сети). При проектировании сети необходимо учесть потери давления в вентиляционном оборудовании. Когда воздух движется по воздуховодной магистрали, он испытывает сопротивление. Для того чтобы преодолеть это сопротивление, вентилятор должен создавать определенное давление, которое измеряется в Паскалях (Па). Для выбора приточной установки нам необходимо рассчитать это сопротивление сети.
Для расчета сопротивления участка сети используется формула:
Где R – удельные потери давления на трение на участках сети
L – длина участка воздуховода (8 м)
Еi – сумма коэффициентов местных потерь на участке воздуховода
V – скорость воздуха на участке воздуховода, (2,8 м/с)
Y – плотность воздуха (принимаем 1,2 кг/м3).
Значения R определяются по справочнику (R – по значению диаметра воздуховода на участке d=560 мм и V=3 м/с). Еi – в зависимости от типа местного сопротивления.
В качестве примера, результаты расчета воздуховода и сопротивления сети приведены в таблице:
Гибкие алюминиевые воздуховоды
Основная сфера применения гибких воздуховодов — соединительный участок между оцинкованным воздуховодом и адаптером решетки, своеобразная гибкая подводка. Дело в том, что воздуховод и входное отверстие адаптера решетки сложно подогнать строго друг под друга. И здесь приходят на помощь гибкие воздуховоды (см. рисунок 4). Они выполняются из тонкой алюминиевой фольги и позволяют решить проблему несоосности этих элементов.
Ещё одна сфера применения гибких воздуховодов — для соединения кухонной вытяжки с вентиляционной шахтой в квартирах и частных домах. Их применение позволяет избежать сложной подгонки жестких воздуховодов, сэкономить на отводах и существенно сократить время монтажа кухонной вентиляции.
Рисунок 4. Внешний вид гибких воздуховодов из алюминиевой фольги без теплоизоляцией (сверху) и с теплоизоляцией (снизу).
Обычно длина соединительных гибких воздуховодов не превышает одного-двух метров. Исключением являются системы кондиционирования с внутренним блоком канального типа. Здесь вся разводка может быть выполнена гибкими воздуховодами. Впрочем, в любом случае при длинных трассах рекомендуется применять оцинкованные воздуховоды — их аэродинамическое сопротивление в 10 и более раз меньше, чем у гибких.
Гибкие воздуховоды из алюминиевой фольги выпускаются в теплоизоляции и без неё. Для приточных систем с секцией охлаждения, а также на подающих воздуховодах канального кондиционера следует применять утеплённые гибкие воздуховоды. Толщина изоляции у утеплённых гибких воздуховодов обычно составляет 25 миллиметров. Поэтому при их применении следует помнить о фактическом увеличении диаметра воздуховода на 50 миллиметров.
Расчет воздуховодов
Расчет воздуховодов вентиляции является одним из важнейших этапов проектирования системы подачи воздуха. Перед тем как приступить к непосредственному подбору площади сечения проводов, необходимо определить производительность вентиляции по воздуху.
Воздуховоды из пластика — это качественный и надёжный товар с длительным эксплуатационным сроком
Расчет производительности по воздуху системы вентиляции
Для начала необходим план объекта, на котором указаны площади и назначение всех комнат. Подача воздуха предусматривается только в те помещения, в которых люди находятся длительное время (гостиная, спальня, кабинет). Не подается воздух в коридоры, поскольку попадает туда из жилых комнат, а далее – в кухни и санузлы. Оттуда воздушный поток выводится через вытяжную вентиляцию. Такая схема предотвращает распространение неприятных запахов по дому или квартире.
Количество подаваемого воздуха для каждого типа жилого помещения рассчитывается с использованием МГСН 3.01.01. и СНиП 41-01-2003. Стандартным объемом на 1 человека в каждой комнате является 60 м?/ч. Для спальни эта цифра может быть уменьшена в 2 раза до 30 м?/ч
Также стоит отметить, что при расчете принимают во внимание только люди, длительно находящихся в помещении
Следующим этапом является расчет воздухообмена по кратности. Кратность показывает, сколько раз в час происходит полное обновление воздуха в помещении. Минимальным значением является единица. Это значение предотвращает застой атмосферы в комнатах.
Перед монтажом труб системы вентиляции производятся необходимые замеры и составляется технический проект
Исходя из вышесказанного, для определения расхода воздуха требуется вычислить два параметра воздухообмена: по кратности и по количеству людей, из которых выбирается большее значение.
Расчет по количеству людей:
L = N х Lnorm, где
L – мощность приточной вентиляции, м?/ч;
N – число людей;
Lnorm – нормированное значение расхода воздуха на человека (типовое – 60 м?/ч, в состоянии сна – 30 м?/ч).
Расчет по кратности воздухообмена:
L = b х S х H, где
L – мощность приточной вентиляции, м?/ч;
b – кратность воздуха (жилые помещения – от 1 до 2, офисы – от 2 до 3);
S – площадь помещения, м?;
H – вертикальные размеры помещения (высота), м?.
После расчета воздухообмена для каждого помещения полученные значения суммируются для каждого метода. Большее и будет требуемой производительностью вентиляции. Например, типичными значениями являются:
- комнаты и квартиры – 100-500 м?/ч;
- коттеджи – 500-2000 м?/ч;
- офисы – 1000-10000 м?/ч
Шланги для системы вентиляции имеют лёгкий вес и высокие параметры гибкости
Методика расчета сечения воздуховодов
Для расчета площади воздуховодов необходимо знать объем воздуха, который должен по ним протекать за промежуток времени (согласно предыдущему этапу расчета) и максимальную скорость потока. Расчетные значения сечения снижаются с увеличением скорости прохождения воздуха, однако при этом возрастает уровень шума. На практике, для коттеджей и квартир значение скорости выбирается в пределах 3-4 м/c.
Стоит отметить, что использовать низкоскоростные проводы с большими размерами не всегда представляется возможным ввиду сложности размещения в запотолочном пространстве. Уменьшить высоту конструкции можно используя прямоугольные воздуховоды, имеющие при аналогичной площади сечения меньшие габариты, по сравнению с круглой формой. Однако монтировать круглые гибкие каналы быстрее и легче.
Компьютерное моделирование внутренних инженерных сетей вентиляции
Расчет площади воздуховода производится по формуле:
Sc = L х 2,778 / V, где
Sc – расчетный размер сечения провода, см?;
L – расход воздуха, м?/ч;
V – скорость воздуха в проводе, м/с;
2,778 – константа для пересчета различных размерностей.
Расчет фактической поперечной площади воздуховода круглого сечения производится по формуле:
Расчет фактической площади пластиковых воздуховодов прямоугольного сечения производится по формуле:
S = A х B / 100, где
S – площадь воздуховода фактическая, см?;
A и B – поперечные размеры воздуховода прямоугольного сечения, мм.
От того, насколько верно будет рассчитана система вентиляции, зависит качество оттока загрязнённого воздуха
Расчеты начинают с магистрального канала и проводят для каждой ветки. Скорость воздуха в главном канале может быть увеличена до 6-8 м/c. Следует добавить, что в бытовых вентиляционных системах, как правило, применяют круглые каналы диаметром 100-250 мм или с аналогичной площадью сечения прямоугольные. Очень удобно использовать для выбора пластиковых воздуховодов для вентиляции каталоги Вентс.
Исходные данные для вычислений
Когда известна схема вентиляционной системы, размеры всех воздухопроводов подобраны и определено дополнительное оборудование, схему изображают во фронтальной изометрической проекции, то есть аксонометрии. Если ее выполнить в соответствии с действующими стандартами, то на чертежах (или эскизах) будет видна вся информация, необходимая для расчета.
- С помощью поэтажных планировок можно определить длины горизонтальных участков воздухопроводов. Если же на аксонометрической схеме проставлены отметки высот, на которых проходят каналы, то протяженность горизонтальных участков тоже станет известна. В противном случае потребуются разрезы здания с проложенными трассами воздухопроводов. И в крайнем случае, когда информации недостаточно, эти длины придется определять с помощью замеров по месту прокладки.
- На схеме должно быть изображено с помощью условных обозначений все дополнительное оборудование, установленное в каналах. Это могут быть диафрагмы, заслонки с электроприводом, противопожарные клапаны, а также устройства для раздачи или вытяжки воздуха (решетки, панели, зонты, диффузоры). Каждая единица этого оборудования создает сопротивление на пути воздушного потока, которое необходимо учитывать при расчете.
- В соответствии с нормативами на схеме возле условных изображений воздуховодов должны быть проставлены расходы воздуха и размеры каналов. Это определяющие параметры для вычислений.
- Все фасонные и разветвляющие элементы тоже должны быть отражены на схеме.
Если такой схемы на бумаге или в электронном виде не существует, то придется ее начертить хотя бы в черновом варианте, при вычислениях без нее не обойтись.
Расчет системы вентиляции
При установке системы вентиляции нужно определить, сколько воздуха необходимо выводить из помещения и подавать. В профессиональной сфере это называется воздухообменом.
В зависимости от этого показателя устанавливаются трубопроводы вентиляционной системы различных размеров.
Существует несколько способов расчета воздухообмена, учитывающих теплообмен, загрязнения и другие параметры. Для использования таких методов нужны специальные знания.
Наиболее простым способом является расчет по кратностям. Все параметры, необходимые для вычислений, указаны в СНиП и ГОСТ.
Кратность – это параметр, показывающий, сколько раз произошла смена воздуха в помещении за 1 час. Например, кратность, равная 2 означает, что весь отработанный воздух ушел, а на его место пришел свежий, и такая замена произошла 2 раза за 1 час.
Каждый тип помещения имеет свой показатель кратности, который указан в таблицах СНиП и ГОСТ.
Воздухообмен вычисляется по формуле:
L = n × V (м3/ч)
n – кратность (/ч);
V – объем помещения (м3).
Если нет возможности получить показатель кратности для данного помещения, можно воспользоваться требованиями СНиП к минимальному расходу наружного воздуха на 1 человека (м3/час) (ссылка).
Для жилых помещений площадью до 20 м2 воздухообмен составит 1 м3/ч на 1 м2.
После вычисления воздухообмена необходимо определиться со значением скорости потока воздуха в канале вентиляции. В вентиляционных системах естественного типа средняя скорость составляет 1 м/с и может достигать 2 м/с в магистральном воздуховоде.
В системе принудительной вентиляции скорость значительно больше и зависит от мощности вентилятора.
Существуют нормативы по скорости воздуха для разных участков системы принудительной вентиляции:
Важно знать! Большая скорость воздуха в канале вызывает шум, который может доставлять дискомфорт.
На основе воздухообмена и скорости воздушного потока определяется важная характеристика канала вентиляции – размер сечения.
Основные формулы аэродинамического расчета
Первым делом необходимо сделать аэродинамический расчет магистрали. Напомним что магистральным воздуховодом считается наиболее длинный и нагруженный участок системы. За результатами этих вычислений и подбирается вентилятор.
Только не забывайте об увязке остальных ветвей системы
Это важно! Если нет возможности произвести увязку на ответвлениях воздуховодов в пределах 10% нужно применять диафрагмы. Коэффициент сопротивления диафрагмы рассчитывается за формулой:
Если неувязка будет больше 10%, когда горизонтальный воздуховод входит в вертикальный кирпичный канал в месте стыковки необходимо разместить прямоугольные диафрагмы.
Основная задача расчета состоит из нахождения потерь давления. Подбирая при этом оптимальный размер воздуховодов и контролирую скорость воздуха. Общие потери давления представляют собой сумму двух компонентов — потерь давления по длине воздуховодов (на трение) и потерь в местных сопротивлениях. Расчитываются они по формулам
Эти формулы правильны для стальных воздуховодов, для всех остальных вводится коэффициент поправки. Он берется из таблицы в зависимости от скорости и шероховатости воздуховодов.
Для прямоугольных воздухопроводов расчетной величиной принимается эквивалентный диаметр.
Рассмотрим последовательность аэродинамического расчета воздуховодов на примере офисов , приведенных в предыдущей статье, по формулам. А затем покажем как он выглядит в программке Excel.
Пример расчета
По расчетам в кабинете воздухообмен составляет 800 м3/час. Задание было запроектировать воздуховоды в кабинетах не больше 200 мм высотой. Размеры помещения даны заказчиком. Воздух подается при температуре 20°С, плотность воздуха 1,2 кг/м3.
Проще будет если результаты заносить в таблицу такого вида
Сначала мы сделаем аэродинамический расчет главной магистрали системы. Теперь все по-порядку:
Разбиваем магистраль на участки по приточным решеткам. У нас в помещении восемь решеток, на каждую приходится по 100 м3/час. Получилось 11 участков. Вводим расход воздуха на каждом участке в таблицу.
- Записываем длину каждого участка.
- Рекомендуемая максимальная скорость внутри воздуховода для офисных помещений до 5 м/с. Поэтому подбираем такой размер воздуховода, чтобы скорость увеличивалась по мере приближения к вентиляционному оборудованию и не превышала максимальную. Это делается для избежания шума в вентиляции . Возьмем для первого участка берем воздуховод 150х150, а для последнего 800х250.
V1=L/3600F =100/(3600*0,023)=1,23 м/с.
V11= 3400/3600*0,2= 4,72 м/с
Нас результат устраивает. Определяем размеры воздуховодов и скорость по этой формуле на каждом участке и вносим в таблицу.
Начинаем расчеты потерь давления. Определяем эквивалентный диаметр для каждого участка, например первого dэ=2*150*150/(150+150)=150. Затем заполняем все данные необходимые для расчета из справочной литературы или вычисляем: Re=1,23*0,150/(15,11*10^-6)=12210. λ=0,11(68/12210+0,1/0,15)^0,25=0,0996 Шероховатость разных материалов разная.
- Динамическое давление Pд=1,2*1,23*1,23/2=0,9 Па тоже записывается в столбец.
- Из таблицы 2.22 определяем удельные потери давления или рассчитываем R=Pд*λ/d= 0,9*0,0996/0,15=0,6 Па/м и заносим в столбик. Затем на каждом участке определяем потери давления на трение: ΔРтр=R*l*n=0,6*2*1=1,2 Па.
- Коэффициенты местных сопротивлений берем из справочной литературы. На первом участке у нас решетка и увеличение воздуховода в сумме их КМС составляет 1,5.
- Потери давления в местных сопротивлениях ΔРм=1,5*0,9=1.35 Па
- Находим суму потерь давления на каждом участке = 1.35+1.2=2,6 Па. А в итоге и потери давления во всей магистрали = 185,6 Па. таблица к тому времени будет иметь вид
После этого аэродинамический расчет можно считать завершенным. Для круглых воздуховодов принцип расчета такой же, только эквивалентный диаметр приравнивается к диаметру воздуховода.
Особенности прямоугольного воздуховода
Несмотря на то что пропускная способность прямоугольных вентиляционных труб ниже, чем у круглых, в небольших частных помещениях их установка более, чем оправдана.
- Квадратные и прямоугольные воздуховоды являются самыми рациональными с точки зрения использования пространства.
- Плоскую вентиляцию можно прокладывать в условиях дефицита свободного места.
- Прямоугольную систему легче замаскировать, например, оборудовав козырьком. Но обычно она довольно органично вписывается в помещение, и ее даже не пытаются скрыть.
- Пропускной способности прямоугольных воздуховодов достаточно в бытовых условиях, поэтому данный недостаток весьма условный.
- На рынке представлены прямоугольные воздуховоды и фасонные изделия к ним разных типоразмеров. Это позволяет реализовать даже самый нестандартный и сложный монтаж.
Единственная нежелательная особенность такого типа вентиляции — при увеличении скорости воздушного потока возникает небольшой шум в трубе.
Некоторые экономические аспекты подбора размеров воздухопровода
Таблица для расчета гидравлического диаметра воздуховода.
При расчете размеров и скорости воздуха в воздуховоде наблюдается такая зависимость: при увеличении последней диаметры каналов уменьшаются. Это дает свои преимущества:
- Проложить трубопроводы меньших размеров гораздо проще, особенно если их нужно подвешивать на большой высоте или если условия монтажа весьма стесненные.
- Стоимость каналов меньшего диаметра соответственно тоже меньше.
- В больших и сложных системах, которые расходятся по всему зданию, прямо в каналы необходимо монтировать дополнительное оборудование (дроссельные заслонки, обратные и противопожарные клапаны). Размеры и диаметры этого оборудования также уменьшатся, и снизится их стоимость.
- Прохождение перекрытий трубопроводами в производственном здании может стать настоящей проблемой, если его диаметр большой. Меньшие размеры позволят пройти так, как нужно.
Главный недостаток такого выбора заключается в большой мощности вентиляционного агрегата. Высокая скорость воздуха в малом объеме создает большое динамическое давление, сопротивление системы растет, и для ее работы требуется вентилятор высокого давления с мощным электродвигателем, что вызывает повышенный расход электрической энергии и, соответственно, высокие эксплуатационные затраты.
Другой путь – это снижение скорости воздушных потоков в воздуховодах. Тогда параметры вентиляционного агрегата становятся экономически приемлемыми, но возникает множество трудностей в монтаже и высокая стоимость материалов.
Схема организации воздухообмена при общеобменной вентиляции.
Проблемы прохождения большой трубой перегруженных оборудованием и инженерными сетями мест решается множеством поворотов и переходов на другие виды сечений (с круглого на прямоугольное или плоскоовальное). Проблему стоимости приходится решать единоразово.
Во времена СССР проектировщики, как правило, старались найти компромисс между этими двумя решениями. В настоящее время удорожания энергоносителей появилась тенденция к применению второго варианта. Собственники предпочитают единоразово решить финансовые вопросы и смонтировать более экономичную вентиляцию, чем потом в течение многих лет оплачивать высокие затраты электроэнергии. Применяется и универсальный вариант, при котором в магистральных воздухопроводах с большими расходами скорость потока увеличивают до 12-15 м/с, чтобы уменьшить их диаметры. Дальше по системе соблюдается скорость 5-6 м/с на ответвлениях, вследствие чего потери давления выравниваются. Вывод здесь однозначный: скорость движения воздушного потока в каналах играет немаловажную роль для экономики предприятия.
Общие сведения
Аэродинамический расчёт – методика определения размеров поперечного сечения воздуховодов для нивелирования потерь давления, сохранения скорости движения и проектного объёма перекачиваемого воздуха.
При естественном способе вентилирования требуемое давление дано изначально, но надо определить сечение. Это связанно с действием гравитационных сил, побуждающих воздушные массы к вытяжке в помещение из вентиляционных шахт. При механическом способе работает вентилятор, и необходимо рассчитать напор газа, а также площадь сечения короба. Используются максимальные скорости внутри вентканала.
Для упрощения методики воздушные массы принимаются за жидкость с нулевым процентом сжатия. На практике это действительно так, так как в большей части систем давление минимально. Оно образуется только от местного сопротивления, при его соударении со стенками воздуховодов, а также на местах изменения площади. Подтверждение тому нашли многочисленные опыты, проводимые по методике, описанной в ГОСТ 12.3.018-79 «Система стандартов безопасности труда (ССБТ). Системы вентиляционные. Методы аэродинамических испытаний».
Методика предполагает подбор площади и формы сечения для каждого участка вентиляционной системы. Если брать её за одно целое, то определение потерь будет условное, не соответствующее реальной картине. Кроме самого движения дополнительно вычисляется и нагнетание.
Расчёты воздуховодов для вентиляции, по аэродинамике, ведутся с различным числом известных данных. В одном случае вычисление начинается с нуля, а в другом — больше половины исходных параметров уже известно.
Этап первый
Сюда входит аэродинамический расчёт механических систем кондиционирования или вентиляции, который включает ряд последовательных операций.Составляется схема в аксонометрии, которая включает вентиляцию: как приточную, так и вытяжную, и подготавливается к расчёту.
Размеры площади сечений воздуховодов определяются в зависимости от их типа: круглого или прямоугольного.
Формирование схемы
Схема составляется в аксонометрии с масштабом 1:100. На ней указываются пункты с расположенными вентиляционными устройствами и потреблением воздуха, проходящего через них.
Выстраивая магистраль, следует обратить внимание на то какая система проектируется: приточная или вытяжная
Приточная
Здесь линия расчёта выстраивается от самого удалённого распределителя воздуха с наибольшим потреблением. Она проходит через такие приточные элементы, как воздуховоды и вентиляционная установка вплоть до места где происходит забор воздуха. Если же система должна обслуживать несколько этажей, то распределитель воздуха располагают на последнем.
Вытяжная
Строится линия от самого удалённого вытяжного устройства, максимально расходующего воздушный поток, через магистраль до установки вытяжки и дальше до шахты, через которую осуществляется выброс воздуха.
Если планируется вентиляция для нескольких уровней и установка вытяжки располагается на кровле или чердаке, то линия расчёта должна начинаться с воздухораспределительного устройства самого нижнего этажа или подвала, который тоже входит в систему. Если установка вытяжки находится в подвальном помещении, то от воздухораспределительного устройства последнего этажа.
Вся линия расчёта разбивается на отрезки, каждый из них представляет собой участок воздуховода со следующими характеристиками:
- воздуховод единого размера сечения;
- из одного материала;
- с постоянным потреблением воздуха.
Следующим шагом является нумерация отрезков. Начинается она с наиболее удалённого вытяжного устройства или распределителя воздуха, каждому присваивается отдельный номер. Основное направление – магистраль выделяется жирной линией.
Далее, на основе аксонометрической схемы для каждого отрезка определяется его протяжённость с учётом масштаба и потребления воздуха. Последний представляет собой сумму всех величин потребляемого воздушного потока, протекающего через ответвления, которые примыкают к магистрали. Значение показателя, который получается в результате последовательного суммирования, должно постепенно возрастать.
Определение размерных величин сечений воздуховодов
Производится исходя из таких показателей, как:
- потребление воздуха на отрезке;
- нормативные рекомендуемые значения скорости движения воздушного потока составляют: на магистралях — 6м/с, на шахтах где происходит забор воздуха – 5м/с.
Рассчитывается предварительное размерная величина воздуховода на отрезке, которая приводится к ближайшему стандартному. Если выбирается прямоугольный воздуховод, то значения подбираются на основе размеров сторон, отношение между которыми составляет не более чем 1 к 3.
Особенности аэродинамического расчёта
Аксонометрия
Расчет аэродинамики выполняется строго тогда, когда рассчитаны требуемые объёмы воздушных масс. Это основное правило. Также заранее определяются с точками установки воздуховодов, а также дефлекторов.
Графическая часть для расчёта аэродинамики – это аксонометрическая схема. На ней указываются все устройства и протяжённость участков. Затем общая сеть дробится на отрезки со схожими характеристиками. Каждый участок сети рассчитывается на аэродинамическое сопротивление отдельно. После определения параметров на всех участках, они переносятся на аксонометрическую схему. Когда все данные внесены, то вычисляется главная магистраль воздуховода.