Узо в электрике

УЗО на однолинейной схеме

Прежде чем выполнять какие-либо практические действия, каждый электрик должен предварительно ознакомиться с проектной документацией, разработанной для объекта. Она может составляться самостоятельно или заказываться в специализированной организации. Поэтому нередки случаи, когда графические изображения тех или иных элементов различаются между собой. Это касается многих элементов, в том числе и устройств защитного отключения. В связи с этим нужно знать, как на схеме обозначается УЗО в различных вариантах.


В первую очередь необходимо заранее изучить общепринятые правила графических обозначений и маркировки оборудования и других элементов, представляемых на электрических чертежах и план-схемах. Некоторые электрики считают, что им не нужен весь объем таких знаний, поскольку большинство информации на практике может не пригодиться. Однако такие рассуждения абсолютно неверны.

Каждый специалист-электротехник, уважающий свою профессию, должен не только освоить чтение электрических схем, но и основные графические изображения различных средств коммуникации, защитных устройств, приборов учета, розеток, выключателей, светильников и других элементов. Такие знания служат хорошим подспорьем в практической работе.

Основные виды маркировок, в том числе и обозначение УЗО на схеме, постоянно используются электриками при выполнении практических работ. Предварительное составление графиков и рабочих схем требует аккуратности и повышенного внимания, поскольку даже маленькая неточность или неправильно нанесенный значок, могут вызвать в дальнейшем серьезную ошибку.

Неверные данные могут быть неправильно истолкованы специалистами сторонних организаций, задействованными для выполнения электромонтажных работ. По этой причине часто возникают серьезные трудности во время прокладки электрических сетей.

Подключение УЗО в квартире

Типовая схема подключения УЗО в квартире приведена на рисунке. Видно, что общее УЗО включается как можно ближе к вводу, но после счетчика и главного (подъездного) автомата.

Там же на врезке показано, что в системе TN-C общее УЗО включать нельзя. При необходимости отдельных УЗО для групп потребителей их включают сразу же ЗА соответствующими автоматами, выделено желтым на рисунке.

Номинальный ток вторичных УЗО берут на ступень-две выше, чем у «своего» автомата: для ВА-101-1/16 – 20 или 25 А; ВА-101-1/32 – 40 или 50 А. Но это в новых домах, а в старых, где защита нужнее всего: земли нет, проводка аховая? Кто-то там обещал просветить на предмет подключения УЗО без земли. Верно, как раз до этого дело и дошло.

  • Помните, что:
  • Ставить общее УЗО или дифавтомат на квартиру с проводкой TN-C недопустимо.
  • Потенциально опасные потребители должны быть защищены отдельными УЗО.
  • Защитные проводники розеток или розеточных групп, предназначенных для подключения таких потребителей, должны быть кратчайшим путем заведены на ВХОДНУЮ нулевую клемму УЗО, см. схему справа.
  • Допускается каскадное включение УЗО при условии, что верхние (ближние к электровводу УЗО) менее чувствительны, чем оконечные.

Человек сообразительный, но незнакомый с тонкостями электродинамики (чем, кстати, грешат и многие дипломированные электрики-силовики) может возразить: «Погодите, а в чем проблема-то? Ставим общее УЗО, заводим на его входной ноль все РЕ – и готово, защитный проводник не коммутируется, заземлились без земли!»

Так, да не так. Отрезок РЕ с соответствующим отрезком нуля и эквивалентным сопротивлением потребителя R образуют петлю, охватывающую магнитопровод дифтрансформатора, см. принцип работы УЗО-Д. Т.е., на магнитопроводе появляется ПАРАЗИТНАЯ обмотка, нагруженная на R. Хотя R мало (48,4 Ом/кВт), на синусоиде в 50 Гц влиянием паразитной обмотки можно пренебречь: длина волны излучения – 6000 км.

Электромагнитное поле установки и шнура к ней также исключаем из рассмотрения. Первое сосредоточено внутри аппарата, иначе он не пройдет сертификацию и не поступит в продажу. В шнуре же провода проходят вплотную друг к другу, и их поле сосредоточено между ними независимо от частоты, это т. наз. Т-волна.

Но при пробое на корпус электроустановки или при наличии наводок в сети по паразитной петле проскакивает короткий мощный импульс тока.

  1. В зависимости от конкретных факторов (просчитать которые точно может только специалист с опытом научной работы и на мощном компьютере) возможны два варианта:
  2. «Анти-дифференциальный» эффект: всплеск тока в паразитной обмотке компенсирует разбаланс токов в фазе и нуле и УЗО будет, что называется, мирно сопеть носиком в подушку, когда на проводах уже повисла скрюченная головешка. Случай исключительно редкий, но крайне опасный.
  3. Также возможен «супер-дифференциальный» эффект: наводка усиливает разбаланс токов, и УЗО срабатывает без утечки, побуждая хозяина к тягостным размышлениям: почему то и дело выбивает УЗО, если в квартире все исправно?

Величина обоих эффектов сильно зависит от размеров паразитной петли; тут сказывается ее открытость, «антенность». При длине РЕ до полуметра эффекты пренебрежимо малы, но уже при его длине в 2 м вероятность несработки УЗО возрастает до 0,01% По цифрам это мало, но по статистике – 1 шанс из 10 000. Когда речь идет о человеческой жизни, это недопустимо много. А если в квартире без заземления проложена паутина из «защитных» проводников, то чего удивляться, если УЗО «вышибает» при включении зарядки мобильника.

В квартире с повышенной пожароопасностью допустимо, при обязательном наличии индивидуальных УЗО потребителей, включенных по рекомендуемой схеме, ставить и общее ПОЖАРНОЕ УЗО на 100 мА разбаланса и с номинальным током на ступень выше, чем у защитных, независимо от тока отсечки автомата.

В описанном выше примере для хрущевки нужно подключить УЗО и автомат, но не дифавтомат! При выбивании автомата УЗО должно остаться в работе, иначе резко возрастает вероятность несчастного случая.

Поэтому УЗО по номиналу нужно брать на две ступени выше автомата (63 А для разобранного примера), а по разбалансу – на ступень выше оконечных 30 мА (100 мА). Еще раз: в дифавтоматах номинал УЗО делают на ступень выше тока отсечки, поэтому для проводки без земли они не годятся.

Что такое ток утечки и каким он бывает?

Ток утечки – это такой ток, который протекает не через нагрузку, а через корпуса электроприборов на землю.

В ГОСТ Р 60755 дано похожее определение:

Ток утечки возникает в результате повреждения изоляции проводников и их касания к корпусу. Например, в водонагревательном баке ток утечки возникает в случае выхода из строя нагревательного элемента (ТЭНа), в стиральной машине также в случае пробивания на корпус ТЭНа или обмоток электродвигателя и так далее.

Классификация токов утечки по тому же ГОСТу производится по его роду:

  1. Синусоидальный ток утечки. Возникает в цепях с «простой» нагрузкой без каких-либо регуляторов или источников вторичного электропитания (импульсные БП, инверторы и пр.). Это могут быть нагреватели, лампы накаливания, электродвигатели без регуляторов.
  2. Пульсиующий постоянный ток. Ток по форме повторяет пульсирующую полуволну, в каждом периоде промышленной частоты электроснабжение принимающий нулевое значение (или значение не более 0,006А) постоянного тока в течение одного непрерывного промежутка времени, выраженного в угловой величине не менее 150˚.

Кто не знает, моменты времени и длительности чего-либо при исследовании электрических сигналов, в нашем случае синусоидального тока, удобно рассматривать в «углах», где 360˚ это период синусоиды, а 180˚ — одна полуволна. Сопутствует понятию пульсирующего тока и такое понятие как «угол задержки ток» – это промежуток времени через который ток начинает протекать к потребителю, от начала периода синусоиды питающей сети.

Если сказать проще, то пульсирующий ток отличается по форме от синусоидального тока питающей сети, он может протекать импульсами, резко или плавно нарастать и спадать.

Где может возникнуть несинусоидальный ток утечки?

Утечки постоянного пульсирующего тока могут возникнуть в устройствах с регуляторами мощности, инверторами (речь идет об управлении электроприводом — инверторные холодильники, кондиционеры, стиральные машины и прочее), импульсными источниками питания. Также в приборах, где для регулировки мощности используют полупроводниковый диод (это называется дискретный регулятор мощности), при включении через него, через прибор протекает лишь одна полуволна переменного тока, соответственно он работает в половину от своей мощности.

Регуляторы мощности используются повсеместно:

— В электроинструменте (курок болгарки и электродрели который регулирует обороты патрона);

— В других устройствах, где нужно регулировать обороты, например, стиральные машины или кухонные комбайны и прочее.

— В электронагревателях с плавной регулировкой температуры, то есть где используется не термостат с биметаллической пластиной, а обеспечивается непрерывная работа с разной мощностью.

— В освещении, но здесь они называются диммерами.

В большинстве случаев для регулировки мощности приборов, питающихся от переменного тока используют тиристорные и симмисторные регуляторы, принцип работы которых основан на срезе переднего фронта фазы (Leading edge). Реже используются диммеры, срезающие спадающую часть сигнала (trailing edge) на иллюстрации ниже вы видите, чем они отличаются.

Виды УЗО

Устройство защитного отключения

Остаточный ток повреждения может принимать различные формы сигналов в зависимости от характеристик нагрузки. Следующие типы УЗО определены в МЭК 60755 для надлежащей защиты различных форм остаточного тока:

Тип AC

УЗО типа AC определяют остаточные синусоидальные переменные токи. УЗО типа AC подходят для общего использования и охватывают большинство применений на практике.

Тип А

В дополнение к характеристикам обнаружения УЗО типа AC, УЗО типа A обнаруживают пульсирующий остаточный ток постоянного тока. Такие колебания могут быть вызваны диодной или тиристорной цепью выпрямителя в электронных нагрузках. УЗО типа A специально предназначены для использования в однофазных электронных нагрузках класса 1.

Тип F

УЗО типа F – это новый тип УЗО, недавно представленный в МЭК 62423 и МЭК 60755. В дополнение к характеристикам обнаружения УЗО типа А, УЗО типа F специально разработаны для защиты цепей, где могут использоваться однофазные драйверы с регулируемой скоростью. В этих цепях форма волны остаточного тока может быть составной из нескольких частот, включая частоту двигателя, частоту переключения преобразователя и частоту линии. В целях повышения энергоэффективности использование преобразователей частоты при определенных нагрузках (стиральная машина, кондиционер и т. д.) расширяется, и тип F RCD будет охватывать эти новые области применения.

Тип F также обладает улучшенными характеристиками устойчивости к помехам (отсутствие срабатывания при импульсном токе). Они способны к отключению, даже если на синусоидальный или импульсный дифференциальный ток постоянного тока накладывается чистый постоянный ток 10 мА.

Тип B

УЗО типа B могут обнаруживать синусоидальный переменный ток, пульсирующий постоянный ток, составной многочастотный, а также плавный остаточный постоянный ток. Кроме того, условия отключения определяются с разными частотами – от 50 Гц до 1 кГц. В электрической распределительной сети переменного тока чистый остаточный постоянный ток может в основном генерироваться из трехфазных выпрямительных цепей, а также из некоторых конкретных однофазных выпрямителей.

УЗО типа AC

УЗО типа B предназначены для использования с нагрузками с трехфазным выпрямителем, такими как приводы с регулируемой скоростью, фотоэлектрическая система, станция зарядки электромобилей и медицинское оборудование.

На схеме – определение различных типов УЗО с их основным применением и формами сигналов. Следует отметить, что различные типы УЗО (AC, A, F и B) вложены друг в друга, как русские куклы: тип B, например, также соответствует требованиям типа F, типа A и типа AC.

Типы УЗО

Типы УЗО

Всё в том же ГОСТ Р 60755 в пунктах с 5.2.9.1 по 5.2.9.3 говорится о том, на какие виды токов утечки реагирует УЗО того или иного типа. Не будем приводить сюда дословных цитат, вы и сами можете прочитать их в упомянутых выше пунктах, но расскажем о чем там написано далее.

Различают 3 типа УЗО — АС, А и В.

  1. УЗО типа АС реагирует только на утечки переменного тока.
  2. УЗО типа А сработает при утечках переменного тока, как тип АС, а также постоянного пульсирующего тока.
  3. УЗО типа В срабатывает при утечке тока разной формы, частоты и полярности.


На лицевой панели устройств защитного отключения наносится графическое обозначение типа. Благодаря ему вы можете понять для чего предназначен прибор

Обозначение типа на примере продукции известных брендов

Если рассмотреть нашу бытовую технику, то станет ясно, что большинство приборов питается от импульсных блоков питания, имеет регуляторы мощности (яркости, оборотов, температуры), или вовсе инверторное управление электродвигателем. Исходя из вышесказанного, очевидно, что следует устанавливать в электрощиты УЗО типа А. Но что об этом говорят другие источники и нормативные документы? Обратимся к ПУЭ, а именно пункту 7.1.78

В зданиях могут применяться УЗО типа «А», реагирующие как на переменные, так и на пульсирующие токи повреждений, или «АС», реагирующие только на переменные токи утечки.

Здесь сказано, что, в принципе, можно использовать и А и АС, но приписка о том, что может стать источником пульсирующего тока говорит о том, что на линии к которым подключаются такие приборы нужно устанавливать УЗО типа А.

Также в книге НПЦ ПЭУ МЭИ «Рекомендации по проектированию, монтажу и эксплуатации электроустановок зданий при применении устройств защитного отключения» есть таблица В1, в которой указаны формы дифференциальных токов при повреждении изоляции, форма тока нагрузки и УЗО какого типа следует использовать. Выдержку из этого документа вы видите ниже, часть текста удалена для уменьшения объема.

Важность приобретения качественного УЗО

Безответственный подход к выбору устройства защитного отключения, то есть покупка аппарата, который не подходит дому или квартире по характеристикам, может стать причиной определённых проблем:

  • ложного срабатывания автоматики, поскольку небольшие утечки электрического тока — это естественная ситуация для проводки, которая была смонтирована относительно давно;
  • несвоевременного получения информации об опасном происшествии, если выбрано чересчур мощное УЗО, что может привести к поражению электротоком;
  • неспособности УЗО функционировать с имеющейся проводкой из алюминиевых жил, ведь почти все аппараты работают только на медных проводах.

Чтобы не совершить ошибку при выборе УЗО, перед покупкой не мешает внимательно ознакомиться с параметрами аппарата.

Таблица: основные параметры УЗО

Параметр УЗО Буквенное обозначение Описание Дополнительная информация Номинальное напряжение Un Уровень напряжения, который избран производителем аппарата и необходим для его функционирования. Обычно номинальное напряжение составляет 220 В, иногда — 380 В

Равномерное напряжение в электросети и номинальное напряжение выключателя дифференциального тока, как ещё называют УЗО, — это важное условие беспроблемной работы устройства. Номинальный ток In Наивысшее значение тока, при котором УЗО функционирует в течение длительного периода. Значение номинального тока может быть следующим: 10, 13, 16, 20, 25, 32, 40, 63, 80, 100 или 125 А. По отношению к дифференциальному автомату эта величина выступает и номинальным током автоматического выключателя в комплектации УЗО

Для дифференциальных автоматов значение номинального тока выбирают из ряда: 6, 8, 10, 13, 16, 20, 25, 32, 40, 63, 80, 100, 125 А. Номинальный отключающий дифференциальный ток Idn Ток утечки. Эту характеристику устройства защитного отключения считают главной, так как она указывает на то, какая величина дифференциального тока заставит аппарат среагировать. УЗО производят со следующими параметрами номинального отключающего дифференциального тока: 6, 10, 30, 100, 300 и 500 мА. Номинальный условный ток короткого замыкания Inc Показатель, по которому можно судить о надёжности, прочности и качестве УЗО. Номинальный условный ток короткого замыкания показывает, насколько хорошо выполнены электрические соединения механизма. Величина номинального тока короткого замыкания стандартизована и может быть равна 3000, 4500, 6000 или 10000 А. Номинальный дифференциальный ток короткого замыкания IDc Ещё один показатель качества и надёжности устройства. Схож с номинальным условным током короткого замыкания. Отличие заключается лишь в том, что сверхток проходит по одному проводнику устройства защитного отключения, а тестирование работы аппарата осуществляется после включения испытательного тока в порядке очереди по разным полюсам УЗО. Предельное значение неотключающегося сверхтока — Это характеристика, отражающая возможности выключателя дифференциального тока оставлять без внимания симметричные токи короткого замыкания и ситуации, когда сеть перегружена. Этот показатель не имеет ничего общего со значением тока, при котором устройство защитного отключения обязано блокировать подачу электропитания. Минимальный показатель неотключающегося тока должен соответствовать значению номинального тока нагрузки, увеличенному в 6 раз. Номинальная включающая и отключающая (коммутационная) способность Im Параметр, зависящий от степени технической подготовки УЗО, то есть от мощности пружинного привода, используемого сырья и качества силовых контактов. Коммутационная способность может быть равна 500 А или величине, в 10 раз превышающей уровень номинального тока У качественных устройств составляет 1000 или 1500 А. Номинальная включающая и отключающая способность по дифференциальному току IDm Характеристика, которая тоже обусловливается техническим исполнением выключателя дифференциального тока. Этот параметр сравним с предыдущим (Im), но разнится с ним тем, что во внимание принимается протекание дифференциального тока. Зачастую его оценивают во время короткого замыкания на корпус электроприёмника в системе TN-C-S.

Характеристики УЗО

Теперь разберемся с характеристиками УЗО обозначенных на корпусе устройства.

УЗО — устройство защитного отключения предназначены для защиты человека от поражения электрическим током при косвенном прикосновении (прикосновение человека к открытым проводящим нетоковедущим частям электроустановки, оказавшимся под напряжением в случае повреждения изоляции), а также при непосредственном прикосновении (прикосновение человека к токоведущим частям электроустановки, находящимся под напряжением). Данную функцию обеспечивают УЗО соответствующей чувствительности (ток отсечки не более 30 мА(миллиампер).

Примечание: В США в соответствии с National Elektrical Code, устройства защитного отключения (ground fault circuit interrupter — GFCI), предназначенные для защиты людей, должны размыкать цепь при утечке тока 4-6 мA(миллиампер) (точное значение выбирается производителем устройства и обычно составляет 5 мА) за время не более 25 мс(микросекунд).В Европе эти значеня для УЗО ,как и у нас составляют 30-100 мА.

УЗО должны срабатывать за время не более 25-40 мс(миллисекунд), то есть до того, как электрический ток, проходящий через организм человека, вызовет фибриляцию сердца — наиболее частую причину смерти при поражениях электрическим током.

В списке ниже приведены значения тока через тело человека и наиболее вероятные ощущения, которые можно при этом почувствовать.

Важно! не пытайтесь это прочувствовать это на себе!

  • Ток через тело человека -0,5mA:не ощущается,слабые ощущения при прикосновении языком,кончиками пальцев и через рану.
  • Ток через тело человека-3 mA:Ощущение близкое к муравьиному укусу.
  • Ток через тело человека-15mA:Если вы взялись за проводник,то невозможно его отпустить.Неприятно,но безопасно.
  • Ток через тело человека- 40mA:Судороги тела,судороги диафрагмы.Опасность удушья в течении нескольких минут.
  • Ток через тело человека-80 mA:Вибрация желудочка сердца.Очень опасно, приводит к достаточно быстрой смерти.

Отсюда второй короткий итог характеристик УЗО

Для защиты человека в бытовых электросетях(однофазный ток  напряжением 220 вольт)  УЗО должны иметь маркировку: ток отсечки не более 30мА,время срабатывания не более 40 мс(миллисекунд). Крупные фирмы производители (такие как АВВ,Legrand) выпускают УЗО для защиты человека, с токами отсечки 10 мА и 30 мА.

На групповые цепи обычно ставят УЗО с током 30 мА. Если поставить УЗО 10 мА, возможны ложные срабатывания (в квартире всегда есть фоновый, естественный ток утечки). 10 мА ставится обычно на одиночных потребителей (стиральную машинку, посудомойку). Если у вас есть душевая кабина, или стиральная машинка установлена в ванной (влажная среда) , применение УЗО с током отсечки 10 мА просто обязательно.

Следует повторить:

  • Для влажных и очень влажных помещений(сауны,бани,ванные,душевые) следует применять УЗО с токоми утечки 10 мА(миллиампер)
  • Для других помещений достаточно применения УЗО с током отсечки 30 мА(миллиампер)
  • В деревянных дамах при проведении электропроводки во избежании пожаров установка УЗО желательна, а лучше сказать просто необходима.

Примечание: В продаже существуют УЗО  с токами отсечки и 100 мА и 300 мА и более. Эти УЗО ( с отключающим дифференциальным током 100 мА, 300 мА и более иногда применяются для защиты больших участков электрических сетей (например, в частном доме или компьютерных центрах), где низкий порог привел бы к ложным срабатываниям. Такие низкочувствительные  УЗО выполняют противопожарную функцию и не являются эффективной защитой от поражения электрическим током.

Подключение

Подключение дифавтомата – весьма несложный процесс. Верхняя часть дифференциального автомата содержит контактные пластины и зажимные винты, предназначенные для подключения нуля N и фазы L от счётчика. Нижняя часть располагает контактами, к которым и подключается линия с потребителями.

Подключение дифавтомата можно представить следующим образом:

  1. Зачистка концов проводников от изоляционного материала примерно на 1 сантиметр.
  2. Ослабление зажимного винта на несколько оборотов.
  3. Подключение проводника.
  4. Затягивание винта.
  5. Проверка качества крепления простейшим физическим усилием.

Выбор между конфигурацией УЗО + автомат и обычным дифавтоматом должен обуславливаться наличием места в щитке и ценой самих устройств. В первом варианте сложность монтажа слегка возрастёт.


В случае с однофазной сетью в 220 В, используемой в большинстве квартир и домов, необходимо использовать двухполюсное устройство. Монтаж дифференциального автомата в данном случае можно провести двумя способами:

  1. На входе после электросчётчика для всей квартирной проводки. При использовании данной схемы питающие провода подключаются к верхним клеммам. К нижним же подаётся нагрузка от различных электрических групп, разделённых автоматическими выключателями. Существенным минусом данного варианта является сложность поиска причины выхода из строя в случае срабатывания автоматики и полное отключение всех групп при неполадках.
  2. На каждую группу потребителей по отдельности. Этот метод применяют для защиты в помещениях, где отмечается повышенный уровень влажности воздуха – ванные, кухни. Актуален метод и для мест, где электробезопасность должна быть на высшем уровне – например, для детской. Понадобится несколько дифференциальных автоматов – несмотря на большие затраты, данный способ является наиболее надёжным и гарантирующим бесперебойное электроснабжение, а срабатывание любого из дифавтоматов не заставит сработать остальные.

При наличии трёхфазной сети в 380 В нужно применять четырёхполюсный дифавтомат. Вариант используется в новых домах или коттеджах, где устройству необходимо выдерживать высокие нагрузки от электроприборов. Использовать такое подключение дифавтоматов можно и в гаражах в связи с возможным использованием мощного электрооборудования.

Можно сделать вывод, что схема подключения дифференциальных автоматов мало чем отличается от аналогичных схем для УЗО. На выходе устройства должны быть подключены фаза и ноль от защищаемого участка сети. Безопасность именно этой группы и будет контролироваться.

Дифференциальные автоматы успешно применяются и в однофазных, и в трёхфазных сетях переменного тока. Установка такого устройства значительно повышает уровень безопасности при эксплуатации электроприборов. Кроме того, дифференциальный автомат может поспособствовать предотвращению пожара, связанного с возгоранием изоляционного материала.

УЗО без земли

Способ подключения УЗО без защитного заземления

Процитированный в начале п 7.1.80 существует в ПУЭ не в гордом одиночестве. Он дополнен пунктами, разъясняющими, как все-таки (ну нет в наших домах контуров заземления, нету!) «впихнуть» УЗО в систему TN-C. Суть их сводится к следующему:

  1. Ставить общее УЗО или дифавтомат на квартиру с проводкой TN-C недопустимо.
  2. Потенциально опасные потребители должны быть защищены отдельными УЗО.
  3. Защитные проводники розеток или розеточных групп, предназначенных для подключения таких потребителей, должны быть кратчайшим путем заведены на ВХОДНУЮ нулевую клемму УЗО, см. схему справа.
  4. Допускается каскадное включение УЗО при условии, что верхние (ближние к электровводу УЗО) менее чувствительны, чем оконечные.

Человек сообразительный, но незнакомый с тонкостями электродинамики (чем, кстати, грешат и многие дипломированные электрики-силовики) может возразить: «Погодите, а в чем проблема-то? Ставим общее УЗО, заводим на его входной ноль все РЕ – и готово, защитный проводник не коммутируется, заземлились без земли!» Так, да не так.

Отрезок РЕ с соответствующим отрезком нуля и эквивалентным сопротивлением потребителя R образуют петлю, охватывающую магнитопровод дифтрансформатора, см. принцип работы УЗО-Д. Т.е., на магнитопроводе появляется ПАРАЗИТНАЯ обмотка, нагруженная на R. Хотя R мало (48,4 Ом/кВт), на синусоиде в 50 Гц влиянием паразитной обмотки можно пренебречь: длина волны излучения – 6000 км.

Электромагнитное поле установки и шнура к ней также исключаем из рассмотрения. Первое сосредоточено внутри аппарата, иначе он не пройдет сертификацию и не поступит в продажу. В шнуре же провода проходят вплотную друг к другу, и их поле сосредоточено между ними независимо от частоты, это т. наз. Т-волна.

Но при пробое на корпус электроустановки или при наличии наводок в сети по паразитной петле проскакивает короткий мощный импульс тока. В зависимости от конкретных факторов (просчитать которые точно может только специалист с опытом научной работы и на мощном компьютере) возможны два варианта:

  • «Анти-дифференциальный» эффект: всплеск тока в паразитной обмотке компенсирует разбаланс токов в фазе и нуле и УЗО будет, что называется, мирно сопеть носиком в подушку, когда на проводах уже повисла скрюченная головешка. Случай исключительно редкий, но крайне опасный.
  • Также возможен «супер-дифференциальный» эффект: наводка усиливает разбаланс токов, и УЗО срабатывает без утечки, побуждая хозяина к тягостным размышлениям: почему то и дело выбивает УЗО, если в квартире все исправно?

Величина обоих эффектов сильно зависит от размеров паразитной петли; тут сказывается ее открытость, «антенность». При длине РЕ до полуметра эффекты пренебрежимо малы, но уже при его длине в 2 м вероятность несработки УЗО возрастает до 0,01% По цифрам это мало, но по статистике – 1 шанс из 10 000. Когда речь идет о человеческой жизни, это недопустимо много. А если в квартире без заземления проложена паутина из «защитных» проводников, то чего удивляться, если УЗО «вышибает» при включении зарядки мобильника.

В квартире с повышенной пожароопасностью допустимо, при обязательном наличии индивидуальных УЗО потребителей, включенных по рекомендуемой схеме, ставить и общее ПОЖАРНОЕ УЗО на 100 мА разбаланса и с номинальным током на ступень выше, чем у защитных, независимо от тока отсечки автомата. В описанном выше примере для хрущевки нужно подключить УЗО и автомат, но не дифавтомат! При выбивании автомата УЗО должно остаться в работе, иначе резко возрастает вероятность несчастного случая. Поэтому УЗО по номиналу нужно брать на две ступени выше автомата (63 А для разобранного примера), а по разбалансу – на ступень выше оконечных 30 мА (100 мА). Еще раз: в дифавтоматах номинал УЗО делают на ступень выше тока отсечки, поэтому для проводки без земли они не годятся.

Принцип работы УЗО (УЗО-Д)

В основе работы УЗО-Д заложена фиксация тока утечки на «землю» и отключения сети при ее появлении. Факт утечки обнаруживается по разнице между токами: выходящим из УЗО и возвращающимся в него через нейтраль.

Если сеть в порядке, то они равны по величине, но противоположны по направлению. При появлении утечки, например, человек коснулся провода, часть тока уйдет через его тело «на землю» по другому контуру, и в итоге ток возвращающийся в УЗО через нейтраль будет меньше выходящего.

Такая же ситуация возникнет, если в каком-то электроприборе нагрузки нарушилась изоляция и под напряжением оказался корпус или другая деталь. Человек, задев за них создаст дополнительный контур «на землю», часть тока пойдет по нему и баланс нарушится (эта ситуация показана на рисунке).

Разницу между выходящим и входящим токами засекает трансформатор с сердечником в виде кольца. Фазный провод и нейтраль N проходят внутри него и служат первичной обмоткой. Вторичная обмотка подключается к исполнительному механизму, размыкающему контакты.

Разумеется, при повреждении изоляции контур ответвления может образоваться и без «участия» человека, но и в этом случае УЗО также сработает и защитит участок сети от опасных последствий (например, нагрева и пожара). Символом «Т» на рисунке обозначена кнопка, включающая схему тестирования устройства – УЗО -Д должно сработать при ее нажатии.

Этот же принцип используется и для трехфазных устройств защиты, однако в них дифференциальный ток во вторичной обмотке появляется не только при утечках, но и при «перекосе фаз» (неравномерно распределенной между фазами нагрузке), поэтому разработаны дополнительные схемы, исключающие срабатывание из-за нарушения симметрии.

Ошибки и их последствия при подключении УЗО

Как и любая электрическая схема, схематическое изображение подключения защитного устройства в общую сеть, должно быть составлено, как и прочитано в дальнейшем, без малейших изъянов. Даже самый скромный недочёт может привести к неисправной работе системы в целом или самого УЗО, в то время как серьёзные отклонения могут принести довольно серьёзный ущерб. Ошибки могут быть допущены самые разные, но среди них можно выделить ряд наиболее распространённых:

  • Нейтраль и заземление соединяются после УЗО. В данном случае можно неверно интерпретировать схему, соединив , с открытой частью электроустановки или с нулевым защитным проводником. В обоих случаях итог будет идентичен.
  • УЗО может быть подключено неполнофазно. Допущение такой ошибки приведёт к ложному срабатыванию, возникающему, из-за того, что до УЗО нагрузка была подключена к нулевому рабочему проводнику.
  • Пренебрежение правилами соединения в розетках нулевого и заземляющего проводника. Проблема кроется в процессе установки розеток, в котором допускается соединение защитного и нулевого рабочего проводников. При этом устройство будет срабатывать даже тогда, когда в розетку ничего не подключено.
  • Объединение нулей в схеме с двумя устройствам защиты. Распространённой ошибкой является неправильное соединение в зоне защиты нулевых проводников обоих УЗО. Она допускается из-за невнимательности и неудобства электромонтажа внутри стеновой панели. Оплошность приведёт к неконтролируемым выключениям устройств.
  • Применение двух или более УЗО усложняют работу по подключению нулевых проводов. Последствия невнимательности могут быть довольно серьёзными. Не поможет и тестирование, так как при нём работа устройства не вызовет никаких нареканий. Но первое же подключение электроприборов может вызвать ошибку и срабатывание всех УЗО.
  • Невнимательность при подключении фазы и нуля, если они взяты с разных УЗО. Проблема возникает при соединении нагрузки с нулевым проводником, относящимся к другому устройству защиты.
  • Несоблюдение полярности подключения, что выражается в подключении фазы и нуля, соответственно сверху и снизу. Это спровоцирует движение токов в одном направлении, вследствие чего создаются условия для невозможности взаимокомпенсации магнитных потоков. Это говорит о том, что перед покупкой нового УЗО следует внимательно изучить принцип подключения старого, так как расположение клемм может быть отличным.
  • Пренебрежение деталями при подключении трехфазного УЗО. Распространённой ошибкой в подключении четырёхполюсного УЗО является использование клемм одноимённой фазы. Тем не менее, работа однофазных потребителей никак не повлияет на работу такого защитного устройства.

Ошибки при подключении УЗО

Посмотрите видео, где рассказано о подключении УЗО:


С этим читают