Особенности лампочки накаливания

Устройство плавного включения (УПВЛ) для ламп накаливания в 220в и 12в

На сегодняшний день производится большое количество различных моделей УПВЛ, которые отличаются между собой по функциям, стоимости и качеству. Устройство, которое продаётся в специализированных магазинах, подключается последовательно к источнику света на 220 В. Схему и внешний вид устройства мы можем увидеть на фотографии внизу.

Схема устройства плавного включения для ламп на 220 В

Если же мощность питания ламп 12 или 24 В, то прибор необходимо подключать перед понижающим трансформатором также последовательно к начальной первичной обмотке.

Прибор должен соответствовать нагрузке, которая будет подключаться с определённым запасом. Для этого надо подсчитать число светильников и их общую мощность.

Так как устройство имеет небольшие размеры, то УПВЛ можно разместить под люстрой, в подрозетнике или в коробке соединения.

Принцип работы

Работает лампочка накаливания за счет нагревания вещества во время протекания тока сквозь него. Электричество проходит через тугоплавкий проводник, разогревая его. Температура нагрева зависит от того, какое напряжение подведено к лампочке. Согласно закону Планка, разогретый излучающий проводник может создавать электромагнитное излучение. Чем выше температура, тем меньше длина волн. Видимое излучение, которое способен уловить человеческий глаз, появляется, когда проводник нагревается до нескольких тысяч градусов. Если прибор разогреть до 5000 К (Кельвин), то появиться нейтральный свет, при снижении температуры в спектре преобладают излучения от желтого до красного.

Большая часть энергии приборов с нитью накала преобразуется в тепло, а незначительное количество в свет. Однако человек способен уловить свет только определенного спектрального состава. Чтобы повысить ярость освещения, нужно повышать температуру тела накала, которое имеет свой максимум (3000°С). При дальнейшем нагреве спираль начнет деформироваться и плавиться. Однако даже предельной температуры удается достигнуть не всегда, особенно, если определенные условия окружающей среды во время работы лампочки накаливания не соблюдены.

Какие бывают лампы освещения

Всем знакома лампа накаливания – один из первых источников света, который известен еще с середины XIX века. Первые изобретения работали на основе платиновой нити-проводника (1840 г). С 1910 года и по сей день в качестве материала используется вольфрам. Свет получается от накала нити, которая помещена в стеклянную колбу с инертным газом.

Интересно: лампы малой мощности (25 Вт) не заполнены никаким видом газа. Они просто вакуумные.

До недавнего времени этот вид источника света был самым распространенным, благодаря низкой стоимости, доступности, компактности и широком диапазону мощностей от 25 до 200 Вт.

Сегодня их постепенно вытесняют светодиодные. И связано это с неменьшим количеством их недостатков:

  • малый срок службы;
  • высокая интенсивность, негативно действующая на зрительный нерв человека.

Но, главное, это низкий КПД. Так, при мощности в 200 Вт стандартная лампочка дает световой поток в 2500 Лм. Тот же показатель светодиод производит при мощности в 25-30 Вт.

При покупке необходимо обратить внимание на такие характеристики, как мощность, напряжение и световой поток. Лампы дневного света (люминесцентные) часто можно встретить в госучреждениях и помещениях большой площади

Они представлены в виде узких стеклянных запаянных трубок с нанесенным изнутри тонким слоем люминофора на фосфорной основе. Заполнены аргоном, но кроме него содержат ртуть, что автоматически относит их к разновидности отходов I класса опасности и требует специальных мер по утилизации

Лампы дневного света (люминесцентные) часто можно встретить в госучреждениях и помещениях большой площади. Они представлены в виде узких стеклянных запаянных трубок с нанесенным изнутри тонким слоем люминофора на фосфорной основе. Заполнены аргоном, но кроме него содержат ртуть, что автоматически относит их к разновидности отходов I класса опасности и требует специальных мер по утилизации.

Буквенное обозначение этого источника света характеризует цвет излучения. Так, Д означает дневной, ХБ – холодно-белый, Е – естественный белый, К – красный и далее по первым буквам цветов соответственно.

Люминесцентные виды ламп относятся к энергосберегающим, так как обладают более высоким КПД и теплоотдачей, дольше работают и дают комфортный рассеянный свет.

Галогенные отличаются от ламп накаливания типом буферного газа (пары брома, йода или галогенов). В результате этого эксплуатационный период продлевается до 4 тысяч рабочих часов.

Наиболее известны разновидности с внешней колбой, мало чем отличающиеся от обычной лампочки накаливания, однако с более высоким качеством цветопередачи. Они часто применяются при монтаже люстр и светильников.

Лампы направленного света нередко используются при монтаже точечных светильников. Они отличаются простотой установки и удобством использования.

Пальчиковый (капсульный) вид отличается небольшими размерами и применяется в основном в работе декоративной подсветки или встроенных в мебель светильников.

Между собой галогенные различаются по таким характеристикам, как:

  • мощность;
  • тип цоколя;
  • форма;
  • размер;
  • применение в приборах.

Светодиодный тип (LED) источника света завоевывает лидерские позиции на протяжении последних 10-15 лет. Его основными преимуществами являются:

  • универсальность (подходит для бытового, промышленного и уличного освещения);
  • безопасность;
  • автономность (собственный источник питания);
  • долгий срок эксплуатации (от 30 до 50 тысяч часов);
  • прочность;
  • компактность;
  • высокая светоотдача.

Из минусов стоит отметить высокую стоимость и ярко-желтый спектр у большинства недорогих LED-ламп.

В автомобилестроении чаще всего применяют определенный тип ламп – ксеноновые. Их главное отличие – это буферный газ ксенон и электрическая дуга вместо стандартной нити накаливания. В итоге яркость производимого света в 3 раза превышает галогенный аналог.

Помимо интенсивности передаваемого светового потока ксеноновые источники света отличаются надежностью, долгим сроком службы, экономичностью и слабым нагревом.

Недостатком является высокая стоимость, а также потеря со временем равномерности освещения и яркости.

Выше представлена лишь небольшая часть классификации различных видов ламп. Помимо них выделяют следующие типы источников света:

  • металлогалогенные;
  • инфракрасные;
  • неоновые;
  • натриевые;
  • кварцевые;
  • дуговые ртутные;
  • газоразрядные;
  • ультрафиолетовые.

Каждый вид характеризуется рядом особенностей и областей применения.

Использование пускорегулирующего аппарата с расщепленной фазой.

Для подключения люминесцентных ламп, имеющих мощность 40 и 80 Вт, наиболее часто используется импульсная двухламповая схема светильника, в которой используются балластные компенсированные устройства 2УБК-40/220 и 2УБК-80/220, работа которых основана на так называемой «расщепленной фазе. Эти комплексные электрические аппараты имеют дроссели, разрядные сопротивления и конденсаторы.

К одной из ламп последовательно подключается дроссель-индуктивное сопротивление, благодаря чему создается отставание тока от приложенного напряжения по фазе. Со второй лампой последовательно подключается не только дроссель, но и конденсатор. Его сопротивление превышает сопротивление дросселя в 2 раза, что способствует опережению тока. При этом показатель суммарного коэффициента мощности комплекта составляет в среднем 0,9-0,95. Конденсатор, подключенный с дросселем одной из ламп параллельно, подбирается специально таким образом, чтобы он способствовал сдвигу фаз между токами обеих ламп. Этот сдвиг должен обеспечивать существенное уменьшение глубины колебаний светового потока ламп, а значит схема светильника будет работать более эффективно.

Чтобы увеличить ток подогрева электродов используется компенсирующая катушка, подключенная последовательно с емкостью и отключаемая стартером. Это видно на монтажной схеме включения двухлампового аппарата 2УБК (пунктирная линия обозначает корпус пускорегулирующего аппарата (ПРА):

Л – люминесцентная лампа;

Ст – стартер;

С – конденсатор;

— r – разрядное сопротивление.

Ламповый картель

Сегодня средняя лампа накаливания работает около 1500 часов, тогда как первоклассные светодиодные лампочки (ценой по 25 $ каждая) излучают свет около 30 000 часов. Независимо от того, имела ли столетняя лампочка секретную формулу работы или нет, она горела в течение 113 лет – то есть около 1 миллиона часов. Так почему же мы не можем создать точно такую же долговечную лампочку?

Такие ламповые компании, как The Shelby Electric Company гордились длительным сроком работы своих изделий, причем настолько, что долговечность их продукции постоянно была в центре внимания их маркетинговых кампаний. Но к середине 1920-х годов способы ведения бизнеса несколько изменились и в них начало преобладать новое правило:

«Продукты, которые не изнашиваются – трагедия для бизнеса». Это направление мысли называется «запланированное устаревание», в рамках которого производители намеренно сокращают период эксплуатации своих товаров, что приводит к их более быстрой замене.

В 1921 году многонациональный производитель лампочек Osram сформировал «Internationale Glühlampen Preisvereinigung» (Международная ассоциацию по формированию цен на лампочки), чтобы регулировать цены и ограничить конкуренцию. General Electric вскоре отреагировал на это, основав в Париже «Международную компанию General Electric». Вместе эти организации торговали патентами и информациях о продажах, чтобы укреплять свои позиции на рынке освещения.

В 1924 году Osram, Philips, General Electric и другие крупные электроэнергетические компании встретились и образовали картель «Феб» под видом общего сотрудничества, якобы направленного на стандартизацию лампочек. Вместо этого они начали заниматься запланированным устареванием. Для достижения последнего компании согласились ограничить продолжительность жизни лампочек на 1000 часов – а это меньше, чем даже длительность работы ламп Эдисона (1200 часов). Любая компания, которая производит лампочку, работающую более 1000 часов, будет оштрафована.

До своего роспуска во время Второй мировой войны, картель якобы в течение двадцати лет останавливал все исследования, направленные на создания лампочек с более длительным сроком использования.

***

Независимо от того, стоит ли до сих пор запланированное устаревание на повестке дня у производителей лампочек, этот вопрос является весьма спорным и о том, что все это происходило (или происходит) на самом деле не существует никаких точных доказательств. В любом случае, производство ламп накаливания постепенно сокращается по всему миру: эта тенденция начала просматриваться в Бразилии и Венесуэле в 2005 году, а многие страны последовали их примеру (Европейский союз, Швейцария и Австралия резко сократили выпуск таких ламп в 2009 году, Аргентина и Россия – в 2012 году, а Соединенные Штаты, Канада, Мексика, Малайзия и Южная Корея – в 2014 году).

Как только появились более эффективные технологии (галогенные, светодиодные, компактные люминесцентные лампы, магнитные индукционные светильники), старые лампы с нитями накаливания постепенно превращаются в пережиток прошлого. Но свисающая с белого потолка пожарной станции Ливермора № 6 невероятно старая лампочка как никогда актуальна и по-прежнему отказывается выходить из строя.

– По материалам из priceonomics.com –

Схемы

Для того чтобы правильно использовать блоки плавного включения ЛК необходимо использовать специальные электросхемы. Благодаря таким схемам можно легко понять, как работает данный прибор и устроен изнутри, а также как его необходимо эксплуатировать.

Схема плавного включения лампы накаливания

Обычно при подключении такого устройства специалисты пользуются наиболее простым и лёгким вариантом схемы. Иногда используют специальную схему с внедрением симистеров. Также, кроме блоков данного вида можно брать полевые транзисторы, которые работают аналогично приборам плавного включения.

Вторая схема плавного включения ламп накаливания

Также того чтобы можно было контролировать напряжение в приборе плавного включения можно использовать автоматические приборы.

Что собой представляет тиристорная схема

Тиристорную схему специалисты рекомендуют использовать для повторения. Состоит она из обычных элементов, которые можно найти в каждом доме. Такую схему можно легко сделать в домашних условиях своими руками.

Тиристорная схема плавного включения лампы

Цепь моста выпрямления (рис.VD1, VD2, VD3, VD4) использует лампочку (рис. EL1) как нагрузку и токоограничитель. Плечи выпрямителя оснащены тиристором (рис. VS1) и сдвигающейся цепью (рис. R1, R2 и C1). Также диодный мост устанавливается за счёт спецификации работы прибора тиристора.

После того как напряжение подаётся на схему, электроток начинает идти через спираль накала и поступает на мост, а затем посредством резистора осуществляется зарядка электролита. Когда достигается предел напряжения открытия тиристора, он начинает открываться и тогда через него проходит ток от лампочки. В результате этого вольфрамовая нить разогревается постепенно и плавно. Период ее разогрева будет зависеть от ёмкости находящегося в схеме устройства конденсатора и резистора.

Чем примечательна симисторная

Такая схема имеет меньшее количество деталей за счёт применения симистора (рис. VS1), который служит силовым ключом.

Симисторная схема плавного включенияламп

Такой элемент, как дроссель (рис. L1), который предназначен для удаления различных помех, появляющихся во время открытия силового ключа, разрешено убрать из общей цепи. (рис. R1)Резистор является ограничителем тока, который поступает на главный электрод (рис. VS1). Цепь, которая задаёт время, исполнена на резисторе (рис. R2) и ёмкости (рис. С1), питающимися посредством диода (рис. VD1). Данная схема работает также как и предыдущая. Когда конденсатор заряжается до уровня напряжения открытия симистора, он начинает открываться, а затем через него и лампочку поступает электрический ток.

Схема плавного включения ламп накаливания

На фотографии внизу мы можем увидеть симисторный регулятор. Такое устройство кроме регулировки мощности в нагрузке, также осуществляет плавное поступление электротока на лампочку, когда её включают.

Устройство плавного включения ламп накаливания

Схема работы блока на специализированной микросхеме

Микросхема типа кр1182пм1 была специально создана специалистами для построения различных фазовых регуляторов.

Схема плавного включения на специализированной микросхеме

В этом случае происходит так, что с помощью самой микросхемы происходит регулирование напряжения на источнике, который обладает мощностью до 150 ватт. А если понадобится управлять более сильной системой нагрузки и десятками осветительных приборов одновременно, то в управленческую цепь просто включается дополнительно силовой симистр. На рисунке внизу мы можем увидеть, как это происходит.

Схема плавного включения с силовым симистром

Применение блоков плавного включения не заканчивается только на обычных лампах, так как специалисты рекомендуют использовать их вместе с галогеновыми лампами, мощностью в 220 В.

Важно знать! С люминесцентными и LED лампами (светодиодными) такие блоки устанавливать нельзя. Это связано с тем, что здесь присутствует различная техника разработки схем, а также принцип действия и присутствие у каждого осветительного прибора своего источника размеренного нагрева для люминесцентных ламп или нет потребности в таком регулировании ламп LED

Принцип работы

Свечение обычной лампочки накаливания происходит за счет нагрева металла. Вольфрамовая нить при пропускании электрического тока мгновенно раскаляется и начинает светиться. Так как все происходит мгновенно, то нить накаливания меняет свою температуру на сотни градусов за сотые доли секунды, а её сопротивление падает в десятки раз. Это приводит к деградации и перегоранию нити. Если же замедлить процесс нагрева, то можно увеличить срок службы в несколько раз.

Блок питания

Чтобы достичь замедления обычно используют схему с конденсаторами. В момент включения устройства в сеть разряженные конденсаторы будут уменьшать нагрузку на лампочку. Когда конденсатор заряжается полностью, нагрузка растет и лампочка получает полное напряжение. В момент выключения питания конденсаторы начинают разряжаться и поддерживать напряжение, за счет этого нить перестает светиться не мгновенно, а плавно гаснет за несколько секунд.

Уменьшая напряжения и создавая плавное нарастание тока в цепи, устройство позволяет уменьшить деградацию нити. Ударный скачок температуры и тока превращается в плавное повышение температур и небольшое повышение силы тока на большом промежутке времени.

Устройство плавного пуска

Это более сложное устройство для плавного повышения напряжения. Если простейший блок питания состоит из конденсатора, резистора и тиристора, подключенных к сети через диодный мост, то устройство плавного включения более сложное и точнее калибрует нагрузку на лампу.

Принцип работы такой же, как и у обычного блока питания, но с небольшим усложнением схемы устройства. Для большей точности и плавности повышения напряжения используется двойной каскад тиристоров или схема с транзистором и тиристором. Принципиальная схема состоит из двух веток — по одной устанавливается конденсатор с резистором, на второй тиристор или транзистор служащий ключом. Аналогично с блоком питания, при заряде конденсатора происходит полный запуск лампы.

Чаще всего устройство плавного включения выполняется в небольших корпусах и предназначено для скрытого монтажа в плафонах или светильниках. Подключение происходит последовательно с источником освещения. Если лампа накаливания рассчитана на меньший ток, то устройство плавного включения устанавливается до понижающего трансформатора.

Диммирование

Диммирование это в первую очередь изменение силы тока и как следствие этого яркости освещения. Первые диммеры были созданы на базе реостата, сейчас используют полупроводниковые элементы — симистор и динистор.

Принцип работы диммера следующий: регулировкой яркости пользователь устанавливает сопротивление потенциометра. Чем больше сопротивление, тем тусклее горит нить накаливания. Основной элемент диммера — это симистор, который служит выключателем. Симистор начинает пропускать ток только, если на его концах определенная разность потенциалов, если она меньше – цепь размыкается. Эту разность потенциалов создает конденсатор заряжающийся от общей цепи.

В целом получается так – конденсатор накопил заряд, выпустил его и создал разность потенциалов. Симистор включается и лампа начинает работать. Когда заряд в конденсаторе заканчивается, разность потенциалов уменьшается и симистор выключается. Этот цикл происходит каждую полуволну переменного тока.

Это интересно: Обзор осветительной продукции Philips — лампы и светильники

Схемы со стартером

Самыми первыми появились схемы со стартерами и дросселями. Это были (в некоторых вариантах и есть) два отдельных устройства, под каждое из которых имелось свое гнездо. Также в схеме есть два конденсатора: один включен параллельно (для стабилизации напряжения), второй находится в корпусе стартера (увеличивает длительность стартового импульса). Называется все это «хозяйство» — электромагнитным балластом. Схема люминесцентного светильника со стартером и дросселем — на фото ниже.

Схема подключения люминесцентных ламп со стартером

Вот как она работает:

  • При включении питания, ток протекает через дроссель, попадает на первую вольфрамовую спираль. Далее, через стартер попадает на вторую спираль и уходит через нулевой проводник. При этом вольфрамовые нити понемногу раскаляются, как и контакты стартера.
  • Стартер состоит из двух контактов. Один неподвижный, второй подвижный биметаллический. В нормальном состоянии они разомкнуты. При прохождении тока биметаллический контакт разогревается, что приводит к тому, что он изгибается. Согнувшись, он соединяется с неподвижным контактом.
  • Как только контакты соединились, ток в цепи мгновенно вырастает (в 2-3 раза). Его ограничивает только дроссель.
  • За счет резкого скачка очень быстро разогреваются электроды.
  • Биметаллическая пластина стартера остывает и разрывает контакт.
  • В момент разрыва контакта возникает резкий скачок напряжения на дросселе (самоиндукция). Этого напряжения достаточно для того, чтобы электроны пробили аргоновую среду. Происходит розжиг и постепенно лампа выходит на рабочий режим. Он наступает после того, как испарилась вся ртуть.

Рабочее напряжение в лампе ниже сетевого, на которое рассчитан стартер. Потому после розжига он не срабатывает. В работающем светильнике его контакты разомкнуты и он никак в ее работе не участвует.

Эта схема называется еще электромагнитный балласт (ЭМБ), а схема работы электромагнитное пускорегулирующее устройство — ЭмПРА . Часто это устройство называют просто дросселем.

Один из ЭмПРА

Недостатков у этой схемы подключения люминесцентной лампы достаточно:

  • пульсирующий свет, который негативно сказывается на глазах и они быстро устают;
  • шумы при пуске и работе;
  • невозможность запуска при пониженной температуре;
  • длительный старт — от момента включения проходит порядка 1-3 секунд.

Две трубки и два дроссели

В светильниках на две лампы дневного света два комплекта подключаются последовательно:

  • фазный провод подается на вход дросселя;
  • с выхода дросселя идет на один контакт лампы 1, со второго контакта уходит на стартер 1;
  • со стартера 1 идет на вторую пару контактов той же лампы 1, а свободный контакт соединяют с нулевым проводом питания (N);

Так же подключается вторая трубка: сначала дроссель, с него  — на один контакт лампы 2, второй контакт этой же группы идет на второй стартер, выход стартера соединяется со второй парой контактов осветительного прибора 2 и свободный контакт соединяется с нулевым проводом ввода.

Схема подключения на две лампы дневного света

Та же схема подключения двухлампового светильника дневного света продемонстрирована в видео. Возможно, так будет проще разобраться с проводами.

https://youtube.com/watch?v=8fF5KQk4L2k

Схема подключения двух ламп от одного дросселя (с двумя стартерами)

Практически самые дорогие в этой схеме — дросселя. Можно сэкономить, и сделать двухламповый светильник с одним дросселем. Как — смотрите в видео.

Оцените статью
stroycollege12.ru
Добавить комментарий

Adblock
detector