Как измерить силу тока мультиметром?

Используемые приборы

В каждом доме прибор учета электроэнергии находится в состоянии постоянного измерения переменного напряжения, но крайне редко эти данные где-либо отображаются. Некоторые из них подключаются напрямую, другие через измерительные трансформаторы. 

В практических целях для измерения уровня напряжения могут применяться:

  • Вольтметры;
  • Мультиметры
  • Осциллографы.

Вольтметр представляют собой устройство для проверки разности потенциалов. На практике могут встречаться как цифровые, так и аналоговые вольтметры, на которых измеряемое напряжение отображается на дисплее или посредством отклонения стрелки на циферблате соответственно.

Важными параметрами при выборе как электронного, так и стрелочного вольтметра являются единицы измерений (мВ, В, кВ), рабочий диапазон и класс точности. Однако сфера их применения ограничена и применяется, чаще всего, для лабораторных исследований, поскольку в бытовых и производственных нуждах содержать один прибор для измерения одной электрической величины нецелесообразно.

Мультиметр или цифровой тестер является более универсальным прибором, который может работать с несколькими  параметрами: электрическим током, сопротивлением, частотой, температурой, напряжением и т.д. Для измерения напряжения мультиметр переключается в режим вольтметра, щупы подключаются к соответствующим разъемам. Конструктивно встречаются и цифровые и аналоговые модели, в некоторых из них можно переключать диапазон измерений, выбирать род тока, в других мультиметрах все эти величины могут подбираться автоматически.

Осциллограф – это довольно сложный прибор для измерения разности потенциалов, так как в нем на цифровом или аналоговом дисплее выводится кривая измеряемой величины. При  этом можно растянуть или сократить диапазон частот, чтобы рассмотреть форму импульсных напряжений, длительность импульсов, нарастание и провалы в кривой функции. Поэтому осциллограф для измерения напряжения применяется в электрических цепях и приборах высокой точности, при изготовлении и проверке радиодеталей и т.д. Мало кто держит дома осциллограф из-за высокой стоимости и сложности выполнения операций.

Об этой статье

Соавтор(ы):
Штатный редактор wikiHow

В создании этой статьи участвовала наша опытная команда редакторов и исследователей, которые проверили ее на точность и полноту. wikiHow тщательно следит за работой редакторов, чтобы гарантировать соответствие каждой статьи нашим высоким стандартам качества. Количество просмотров этой статьи: 41 998.

Категории: Физика

English:Measure Amperage

Español:medir el amperaje

Português:Medir Corrente Elétrica

Italiano:Misurare l’Amperaggio

Deutsch:Die Stromstärke mit einem Amperemeter messen

Français:mesurer l’intensité d’un courant électrique

Bahasa Indonesia:Mengukur Arus Listrik

Nederlands:Stroomsterkte meten

العربية:قياس شدة التيار بوحدة الأمبير

日本語:電流(アンペア)の測定

Печать

Мониторы тока с ШИМ-выходом

Широтно-импульсная модуляция выходного сигнала имеет преимущества при сопряжении монитора тока с микропроцессором. Характеристики микросхем с ШИМ приведены в таблице 5, а пример применения монитора тока IR2175 для контроля тока фазы электродвигателя — на рис. 13.


Рис. 13. Схема контроля тока с IR2175
Таблица 5. Мониторы тока с ШИМ-выходом

Следует упомянуть и правила выбора токоизмерительных шунтов. Естественно, что чем меньше сопротивление шунта, тем большее влияние оказывает сопротивление подводящих проводов. Для точных измерений используются четырехвыводные резисторы.

Если особых требований к точности не предъявляется, шунт может быть выполнен в виде дорожки на печатной плате. При этом отклонение сопротивления от расчетного значения в серии изделий может достигать ±5%, кроме того, температурный коэффициент сопротивления меди достаточно велик. Последнее обстоятельство в некоторых случаях не является критичным. Например, микросхемы ZXCT1008–ZXCT1010 имеют отрицательный температурный дрейф коэффициента передачи в положительном диапазоне температур, что в некоторой степени компенсирует положительный температурный коэффициент сопротивления меди.

Возможно, вам также будет интересно

В статье представлены драйверы реверсируемых двигателей постоянного тока общегоназначения производства японской компании ROHM. Японская компания ROHM представляет на рынке электронных компонентов драйверы реверсируемых двигателей постоянного тока общего назначения на основе технологии широко-масштабной интеграции LSI. Представленные драйверы могут быть трех видов: драйвер управления одним электродвигателем, двумя электродвигателями без стабилизации скорости, а также драйвер управ- ления одним

В статье обсуждаются вопросы учета времени в устройствах с расширенным климатическим исполнением. Рассмотрены микросхемы компании Maxim Integrated Products, решающие задачи точного учета времени в широком диапазоне температур. Даны рекомендации по их применению. Задача точного учета времени в широком температурном диапазоне Задача учета времени решается в самых разнообразных приложениях. Среди них счетчики расхода тех или иных

Израильска компания M?Systems со времени своего создания была ориентирована на разработку и производство запоминающих устройств, предназначенных для хранения больших объемов в екстремальных условиях внешних механических и электромагнитных воздействий, в первую очередь, в секторе военного применения.

Принципиальная схема микро- наноамперметра

Типичный пример амперметра с активным преобразователем приведен на схеме ниже: 

Чтобы эта зависимость выполнялась в реальных условиях, входное напряжение дисбаланса должно быть очень маленьким, а входной поляризационный ток пренебрежимо малым. Эти параметры становятся особенно важными когда дело доходит до измерений токов порядка пикоампер, на результат которых будет влиять входной поляризационный ток. Есть несколько примеров пикоамперметров на основе микросхемы LMC662. Согласно даташита, м/с имеет очень низкий входной поляризационный ток, порядка 2 фемтоампер. 

В этом устройстве использовался усилитель TS1001 от Touch Stone. Схема имеет посредственные параметры и на первый взгляд не подходит измерять такие маленькие токи. Но особенность, которая отличает микросхему TS1001, заключается в чрезвычайно низком энергопотреблении, схема работает нормально даже при напряжении 0,8 В и потребляет ток 0,8 мкА. Следовательно будет отлично работать в аккумуляторных устройствах, а энергопотребление её настолько мало, что даже не требуется пользоваться кнопкой подачи питания! 

На принципиальной схеме ниже амперметр с активным преобразователем на основе микросхемы TS1001. Применяя разное значения резистора, разрешения варьируются от 1 мА / В до 1 мкА / В в четырех поддиапазонах. Используя любой популярный мультиметр можно измерить ток в диапазоне наноампер. Как упоминалось ранее, входной ток смещения усилителя TS1001 составляет 25 пА, поэтому самый низкий диапазон был специально выбран 1 мкА / В. 

Усилитель может питаться от одного напряжения с мультиметром или использовать виртуальную массу. В случае несимметричного источника измеряемый ток должен поступать на неинвертирующий вход усилителя, чтобы напряжение появлялось на выходе. Следовательно, это решение более выгодно для измерений постоянных токов, где поляризация тока может быть заранее определена. Использование виртуальной массы, как показано на схеме ниже, позволяет измерять постоянные и переменные токи. Схема может питаться от одной 1,5-вольтовой батареи.

Поскольку приставка имеет довольно низкое произведение коэффициента усиления и предельной частоты, можно измерять только токи с низкой изменчивостью (до 60 Гц).

Все устройство питается от одной батареи и поскольку оно используется для измерения только постоянного тока, источник питания с виртуальной массой был отложен. 

Если же необходимо измерить более низкие токи или более высокие частоты, то можете выбрать другой операционный усилитель — например AD8603, который совместим с выводами TS1001 и может использоваться для измерения токов в диапазоне пикоампер. 

   Обсудить статью ПРИСТАВКА ИЗМЕРИТЕЛЬ МАЛЫХ ТОКОВ

Измерение напряжения в сети

Чтобы правильно выполнить измерение напряжения необходимо четко представлять принцип и объект исследования. Поэтому следует отметить, что напряжение представляет собой такую электрическую величину, которая показывает разность заряда между двумя электрическими точками. К примеру, если в одной точке заряд составит +35 В, а в другой +310 В, то разница между этими точками составит 310 – 35 = 275 В, это и будет напряжение. Соответственно измерение напряжения может производиться только относительно чего-то, поэтому используются сразу две точки.

Рис. 1. Схема измерения напряжения

Если говорить о падении напряжения на каком-либо объекте или участке цепи, то измерение напряжения проводиться относительно концов прибора или цепи, точек подключения и т.д

При этом важно учитывать, что цифровой вольтметр или мультиметр в режиме измерения считается бесконечным сопротивлением или разрывом в цепи

Падение напряжения возможно только при условии протекания тока, поэтому подключение вольтметров последовательно с измеряемым объектом недопустимо, так как через него перестанет протекать ток. Аналоговый или электронный вольтметр должен подключаться только параллельно по отношению к измеряемому сигналу.

С практической точки зрения следует заметить, что аналоговые модели измерительных приборов имеют входное сопротивление равное 10 – 20 кОм, а современные мультиметры могут похвастаться 1МОм. Так как через сопротивление на входе в измерительное устройство может протекать ток утечки, этот делитель напряжения будет обуславливать снижение точности измерений. Поэтому чем ближе сопротивление на входе к бесконечности, тем более точный прибор вы используете.

Важно отметить, что замеры производятся под напряжением, из-за чего присутствует угроза поражения электротоком

Поэтому важно соблюдать элементарные меры предосторожности. Далее рассмотрим порядок выполнения измерения для постоянного и переменного напряжения

Далее рассмотрим порядок выполнения измерения для постоянного и переменного напряжения.

Постоянного тока

Рис. 2. Измерение напряжения постоянного тока

Для цепи постоянного тока расмотрим порядок измерения напряжения при помощи цифрового мультиметра. Для этого:

  1. Переведите переключатель мультиметра в положение для постоянного напряжения. На панели обозначается латинской буквой V со значком « = », знаками «+ и – », также может обозначаться аббревиатурой DC.
  2. Выберете нужный предел измерения, который будет максимально приближен к предполагаемому номиналу, но выше измеряемого.
  3. Установите щупы в соответствующие разъемы – черный к выводу COM, красный к выводу V.
  4. Приложите щупы мультиметра  сразу к двум точкам – красный к плюсу, черный к минусу. Если вы заранее не знаете положение потенциалов, и показание прибора имеет отрицательное значение, нужно просто поменять полярность подключения.

На дисплее вы увидите показания вольтметра, если значение слишком малое, переключите ручку на меньший предел измерений. Прикладывая щупы, создавайте хорошее усилие, чтобы избежать большого переходного сопротивления, иначе они внесут ощутимую погрешность измерений.

Переменного тока

Рис. 3. Измерение переменного напряжения

В цепи переменного тока бытовой цепи важно учитывать ее опасность из-за номинала в 220/380 В. Поэтому при невозможности подключения мультиметра непосредственно в процессе эксплуатации, его присоединение должно выполняться при отключенном напряжении при помощи «крокодилов»

В остальном процесс измерения идентичен:

  1. Переключите ручку мультиметра в положение для измерения переменного напряжения. На панели оно обозначается как  V со значком «~» или аббревиатурой AC.
  2. Установите ручкой деление на нужный предел по принципу ближайшего большего потенциала относительно измеряемого номинала. 
  3. Выполните подключение щупов к соответствующим выводам: черный к выводу COM, красный к выводу V.
  4. Подключите измерительный прибор к нужному устройству, заметьте, что полярность щупов здесь значения не имеет.

На дисплее у вас отобразится действующее значение разности потенциалов, именно оно и является основным для всех расчетов. Но, помимо этого существует и амплитудное значение, которое больше действующего на √2 раз или 1,41 раза.

Как не травмироваться при замерах?

Чтобы перестраховаться, если имеются сомнения, лучше ознакомиться с инструкцией к электроприбору и проверить верность подсоединения

Выполняя замеры, важно помнить о мерах защиты при работе с электротоком. Травмирование может случиться даже при работе с незначительной токовой мощности аппаратами

Особенно в условиях с высокой влажностью. Необходимо работать в прорезиненной спецодежде.

Вам это будет интересно Как проверять индикаторной отверткой

Для исследования СТ, ученые придумали измеряющие электроприборы. Из-за незначительного внутреннего сопротивления, эти измерители не оказывают влияние на параметры электротока в измеряемой токовой цепи. Приборы активно применяются на промобъектах и дома.

Измерение тока с использованием датчика Холла

Эффект Холла был обнаружен американским физиком Эдвином Гербертом Холлом и может использоваться для определения тока. Он обычно используется для обнаружения магнитного поля и может быть полезен во многих приложениях, таких как спидометры, дверная сигнализация, бесколлекторные двигатели и т.п.

Датчик Холла выдает выходное напряжение в зависимости от магнитного поля. Соотношение выходного напряжения пропорционально магнитному полю. В процессе измерения ток определяется путем измерения магнитного поля. Выходное напряжение очень низкое и его необходимо увеличить до полезного значения с помощью усилителя с высоким коэффициентом усиления и очень низким уровнем шума. Помимо схемы усилителя датчик Холла требует дополнительных схем, так как это линейный преобразователь.

Преимущества:

  • Может использоваться на более высокой частоте
  • Может использоваться как в устройствах переменного, так и постоянного тока
  • Бесконтактный метод
  • Может использоваться в суровых условиях
  • Высокая надежность

Недостатки:

  • Датчик дрейфует и требует компенсации
  • Дополнительная схема требует для надежного выходного сигнала
  • Дороже, чем метод на основе шунта

Датчики с эффектом Холла используются в токоизмерительных клещах, а также во многих промышленных и автомобильных системах измерения тока. Многие типы линейных датчиков на эффекте Холла могут измерять ток от нескольких миллиампер до тысяч ампер.

Оцените статью
stroycollege12.ru
Добавить комментарий

Adblock
detector