Особенности и порядок расчета вытяжной и приточной вентиляции

Как грамотно спроектировать вентсистему

Теперь приступим к практическим рекомендациям, как правильно сделать полноценную вентиляцию в частном доме своими руками.


Алгоритм основных работ:

  1. нужно изучить санитарные нормы по воздухообмену в жилых помещениях, соотнести их с габаритами ваших комнат;
  2. произвести расчет размеров воздушных каналов;
  3. подобрать оптимальную схему размещения воздуховодов;
  4. подготовить места для монтажа конструкций;
  5. установить все элементы системы.

Если вы задумались о качественном воздухообмене на стадии проектирования дома, вы очень правильно сделали. Именно на этом этапе можно спланировать размещение коммуникаций так, чтобы они не были заметны и при этом работали с максимальной отдачей.

Основная ошибка в планировании вентисистем – установка слишком мощных сетей, которые приведут к неоправданным энергопотерям. Другой неприятный момент – возникновение обратной  тяги в вентиляции частного дома.

Для чего производится расчёт площади воздуховодов и фасонных изделий

Правильный проект систем вентиляции – это лишь полдела. Если ошибиться в расчёте квадратуры воздуховодов, то может получиться обратный эффект – идеальная план-схема есть, а оттока или притока воздуха нет. Подобные просчёты могут привести к тому, что в помещениях будет повышенная влажность, которая приведёт к появлению грибка, плесени и неприятному запаху.

Очень важно!

Если домашний мастер не уверен в своих силах, боится не справиться с вычислениями, то лучше обратиться за инженерной помощью в расчёте воздуховодов. Лучше заплатить за работу профессионалу, чем впоследствии кусать локти.

Требования к системе вентиляции на производстве

Регулируются системы специальными санитарными нормами, которые раскрыты в СНиП «Вентилирование специальных и производственных зданий». Основные положения, которые следует выделить:

  1. Монтаж в промышленных местах должен производиться в любом производстве, невзирая на количество работников и загрязненность. Необходимо это в целях безопасности при возникновении аварии или пожара для возможности очистки требуемого места
  2. Сама система не должна стать причиной загрязнения. В новых технологиях это исключено. Требования применимо к более старым, требующим замены устройствам
  3. Шум вентиляционной установки должен соответствовать нормам и не усиливать шум от производства
  4. С преобладанием загрязнения воздушной среды, количество вытягиваемого воздуха должно быть больше приточного. Если место чистое, то ситуация должна быть противоположная, приток больше, а вытяжка меньше. Необходимо это для избегания попадания загрязненного воздушного потока в находящиеся рядом с этими местами. В большинстве остальных случаев необходимо соблюдать баланс притока и удаления воздушной среды
  5. Согласно нормам, не меньше 30 м3/ч на одного человека свежего воздуха, при увеличенных площадях производственных местах, количество чистого подаваемого воздуха следует увеличивать
  6. Количество входящего чистого воздуха на человека должно быть в достаточном объёме. Расчетами устанавливается скорость подачи воздушного потока и его масса. В учет берутся следующие факторы: влажность, избыточное количество тепла и загрязненность среды. В случае, если наблюдаются несколько или все вышеперечисленные факторы, то рассчитывается количество притока по превосходящей величине.
  7. Устройство и вид системы на каждом производстве регулируются СНиП. Можно установить любую систему, если проектирование произведено с соблюдением законов и норм

Первый способ – классический (см. рисунок 8)

1. Процессы обработки наружного воздуха:

  • нагрев наружного воздуха в калорифере 1-го подогрева;
  • увлажнение по адиабатному циклу;
  • нагрев в калорифере 2-го подогрева.

2. Из точки с параметрами наружного воздуха — (•) Н проводим линию постоянного влагосодержания — dН = const.

Эта линия характеризует процесс нагревания наружного воздуха в калорифере 1-го подогрева. Конечные параметры наружного воздуха после его нагревания будут определены в пункте 8.

3. Из точки с параметрами приточного воздуха — (•) П проводим линию постоянного влагосодержания dП = const до пересечения с линией относительной влажности φ = 90% (эту относительную влажность стабильно обеспечивает оросительная камера при адиабатическом увлажнении).

Получаем точку — (•) О с параметрами увлажнённого и охлаждённого приточного воздуха.

4. Через точку — (•) О проводим линию изотермы — tО = const до пересечения со шкалой температур.

Значение температуры в точке — (•) О близко к 0°С. Поэтому в оросительной камере возможно образование тумана.

5. Следовательно, в зоне оптимальных параметров внутреннего воздуха в помещении необходимо выбрать другую точку внутреннего воздуха — (•) В1 с той же температурой — tВ1 = 22°С, но с большей относительной влажностью — φВ1 = 55%.

В нашем случае точка — (•) В1 принималась с самой максимальной относительной влажностью из зоны оптимальных параметров. При необходимости возможно принять и промежуточную относительную влажность из зоны оптимальных параметров.

6. Аналогично пункту 3. Из точки с параметрами приточного воздуха — (•) П1 проводим линию постоянного влагосодержания dП1 = const до пересечения с линией относительной влажности φ = 90% .

Получаем точку — (•) О1 с параметрами увлажнённого и охлаждённого приточного воздуха.

7. Через точку — (•) О1 проводим линию изотермы — tО1 = const до пересечения со шкалой температур и считываем численное значение температуры увлажнённого и охлаждённого воздуха.

Важное замечание!

Минимальное значение конечной температуры воздуха при адиабатическом увлажнении должно находиться в пределах 5 ÷ 7°С.


8. Из точки с параметрами приточного воздуха — (•) П1 проводим линию постоянного теплосодержания — JП1 = сonst до пересечения с линией постоянного влагосодержания наружного воздуха — точка (•) Н — dН = const.

Получаем точку — (•) К1 с параметрами нагретого наружного воздуха в калорифере 1-го подогрева.

9. Процессы обработки наружного воздуха на J-d диаграмме будут изображаться следующими линиями:

  • линия НК1 — процесс нагревания приточного воздуха в калорифере 1-го подогрева;
  • линия К1О1 — процесс увлажнения и охлаждения нагретого воздуха в оросительной камере;
  • линия О1П1 — процесс нагревания увлажнённого и охлаждённого приточного воздуха в калорифере 2-го подогрева.

10. Обработанный наружный приточный воздух с параметрами в точке — (•) П1 поступает в помещение и ассимилирует избытки теплоты и влаги по лучу процесса — линия П1В1. За счёт нарастания температуры воздуха по высоте помещения — grad t. Параметры воздуха изменяются. Процесс изменения параметров происходит по лучу процесса до точки уходящего воздуха — (•) У1.

11. Необходимое количество приточного воздуха для ассимиляции избытков теплоты и влаги в помещении определяем по формуле

12. Требуемое количество теплоты для нагрева наружного воздуха в калорифере 1-го подогрева

Q1 = GΔJ(JK1 — JH) = GΔJ(tK1 — tH), кДж/ч

13. Необходимое количество влаги для увлажнения приточного воздуха в оросительной камере

W = GΔJ(dO1 — dK1), г/ч

14. Требуемое количество теплоты для нагрева увлажнённого и охлаждённого приточного воздуха в калорифере 2-го подогрева

Q2 = GΔJ(JП1 — JO1) = GΔJ x C(tП1 — tO1), кДж/ч

Величину удельной теплоёмкости воздуха С принимаем:

C = 1,005 кДж/(кг × °С).

Чтобы получить тепловую мощность калориферов 1-го и 2-го подогрева в кВт необходимо величины Q1 и Q2 в размерности кДж/ч разделить на 3600.

Принципиальная схема обработки приточного воздуха в холодный период года — ХП, для 1-го способа — классического, смотри на рисунок 9.

Программа расчета противодымной вентиляции Fans 400

fans 400 Программа Fans 400 создана для расчета противодымной вентиляции помещений. С ее помощью можно определить показатели системы удаления дыма из холлов, коридоров и вестибюлей. Программа для расчета противодымной вентиляции помогает подобрать мощность вентиляторов и другого специального оборудования.

Fans 400 создана для инженеров-проектировщиков, пожарных инспекторов и студентов профильных специальностей.

Использование для расчетов противодымной вентиляции не вызовет сложностей у пользователя любого уровня подготовки. Она распространяется бесплатно. Для корректной работы программы к компьютеру необходимо подключить принтер.

Алгоритм расчета потерь напора воздуха

Расчет нужно начинать с составления схемы системы вентиляции с обязательным указанием пространственного расположения воздуховодов, длины каждого участка, вентиляционных решеток, дополнительного оборудования для очистки воздуха, технической арматуры и вентиляторов. Потери определяются вначале по каждой отдельной линии, а потом суммируются. По отдельному технологическому участку потери определяются с помощью формулы P = L×R+Z, где P – потери воздушного давления на расчетном участке, R – потери на погонном метре участка, L – общая длина воздуховодов на участке, Z – потери в дополнительной арматуре системы вентиляции.

Для расчета потерь давления в круглом воздуховоде используется формула Pтр. = (L/d×X) × (Y×V)/2g. X – табличный коэффициент трения воздуха, зависит от материала изготовления воздуховода, L – длина расчетного участка, d – диаметр воздуховода, V – требуемая скорость воздушного потока, Y – плотность воздуха с учетом температуры, g – ускорение падения (свободного). Если система вентиляции имеет квадратные воздуховоды, то для перевода круглых значений в квадратные следует пользоваться таблицей № 2.

Табл. № 2. Эквивалентные диаметры круглых воздуховодов для квадратных

150 200 250 300 350 400 450 500
250 210 245 275
300 230 265 300 330
350 245 285 325 355 380
400 260 305 345 370 410 440
450 275 320 365 400 435 465 490
500 290 340 380 425 455 490 520 545
550 300 350 400 440 475 515 545 575
600 310 365 415 460 495 535 565 600
650 320 380 430 475 515 555 590 625
700 390 445 490 535 575 610 645
750 400 455 505 550 590 630 665
800 415 470 520 565 610 650 685
850 480 535 580 625 670 710
900 495 550 600 645 685 725
950 505 560 615 660 705 745
1000 520 575 625 675 720 760
1200 620 680 730 780 830
1400 725 780 835 880
1600 830 885 940
1800 870 935 990

Потери давления воздуха в изгибах берутся из таблицы № 3.

Табл. № 4. Потери давления в диффузорах
Табл. № 5. Диаграмма потерь давления воздуха в прямолинейных воздуховодах

Во время проектирования и расчетов существующие нормативные акты рекомендуют, чтобы разница в величине потерь давления между отдельными участками не превышала 10%. Вентилятор нужно устанавливать в участке системы вентиляции с наиболее высоким сопротивлением, самые удаленные воздуховоды должны иметь минимальное сопротивление. Если эти условия не выполняются, то необходимо изменять план размещения воздуховодов и дополнительного оборудования с учетом требований положений. Расчет приточных и вытяжных систем воздуховодов сводится к определению размеров поперечного сечения каналов, их сопротивления движению воздуха и увязки напора в параллельных соединениях. Расчет потерь напора следует вести методом удельных потерь напора на трение.


Основные показатели расчета вентсистемы

Предварительный расчет вентсистемы производится еще на подготовительном этапе

составления проектной документации. Проектирование позволяет определитьоптимальную производительность по воздуху , которая выражается в м3, а также кратность воздухообмена, соответствующая требованиям СНиП. Среднее значение кратности для жилых комнат = 1, а для офисов и других помещений находится в пределах 2-3. Также нормативами установлено, чтопотребность человека в свежем воздухе составляет 60 м3, а для спален – 30 м3.

Для точного расчета вентсистемы необходим план здания

с обозначением площади и высоты помещений и их предназначения. Также для расчета имеет значение наличие тепловыделяющего оборудования, показатели влажности и присутствие вредных веществ (актуально для предприятий) и прочие факторы. В обязательном порядке определяется возможность проветривания.

В домах и квартирах подачу чистого воздуха необходимо обеспечить в жилые помещения.

Коридоры, как правило не оборудованы вентиляцией, а отвод загрязненного воздуха и посторонних запахов осуществляется посредством вытяжных каналов, расположенных на кухнях и в санузлах

При расчете вентиляционной системы специалисты особое внимание уделяют гаражам, каминным залам, котельным и прочим помещениям особого назначения

На основании полученных данных определяются показатели воздухораспределительной системы

Принимая во внимание показатели пропускной способности сети и климатические особенности, выбирается калорифер оптимальной мощности, поскольку температура подаваемого снаружи воздуха не должна быть менее +180 С°

Для правильного расчета системы воздуховодов, специалисты балансируют скорость воздушного потока,

уровень шума и давление в вентиляции. Как правило, скорость потока воздуха равняется 2,5-4 м/с. Если это значение будет выше, будет нарастать шум, а при его снижении возникнет дефицит свежего воздуха. Произвести правильные расчеты вентиляции с учетом существующих требования и нормативов, выбрать лучшее вентиляционное оборудование смогут только профессионалы.

Кратность воздухообмена

Этот критерий чаще всего используется для упрощенного расчета системы вентиляции. Под термином «кратность воздухообмена» (в английской терминологии air exchange rate) понимают обмен воздушных масс, выражающихся количеством за час. Причем в зависимости от способа эксплуатации помещения учитывается либо число обменов для помещения в целом, либо кратность с учетом площади (объема). Ниже приведена таблица с нормативными данными для помещений частного дома или общественного здания. При этом подразумевается, что приток воздуха идет естественным путем, а кратность считается для вытяжной вентиляции. Расчетная температура в холодный период указывается для того, чтобы при вычислениях компенсировать излишнюю сухость воздуха за счет действия отопительных приборов.

Таблица 1. Кратность воздухообмена по площади или назначению помещений.

При использовании таблицы важно обратить внимание: кратность указывается в расчете на площадь помещения, а в нашем онлайн-калькуляторе расчет ведется для объема. При этом пользователь теряется – какое значение кратности применить в калькуляторе вентиляции, если максимальное значение не соответствует норме для жилых помещений? Здесь придется делать поправку на пересчет кратности для объема или воспользоваться ориентировочными цифрами (СНиП 2.08.01-89) из таблицы ниже

При этом пользователь теряется – какое значение кратности применить в калькуляторе вентиляции, если максимальное значение не соответствует норме для жилых помещений? Здесь придется делать поправку на пересчет кратности для объема или воспользоваться ориентировочными цифрами (СНиП 2.08.01-89) из таблицы ниже.


Таблица 2. Кратность воздухообмена для помещений общего или специального назначения.

Применяя показатель, соответствующий жилым комнатам или спальням, равный единице, получаем требуемую производительность вентиляционной системы (м.куб./час).

Основой расчета вентиляции онлайн является формула

здесь V — объем комнаты (произведение площади на высоту), м.куб.;

Kp — кратность воздухообмена согласно санитарно-гигиеническим нормам, 1/ч.

Для жилой комнаты с площадью 20 м.кв. и высотой 2,5 м требуемая мощность вентиляции составит

L = (20 х 2,5) х 1 =50 м.куб.

При использовании данных первой таблицы расчет ведется без учета высоты помещения, то есть

здесь S — площадь помещения, м.кв.;

Kp — кратность воздухообмена согласно нормам, 1/ч.

Для тех же размеров комнаты (20 м.кв.) необходимый объем воздуха в час

L = 20 х 3 = 60 м.куб.

Данный метод вычислений дает более высокие требования к системе вентиляции, поэтому предпочтительным считается предыдущий вариант вычислений. При указании в таблице объема воздуха на помещение именно эти цифры используют для дальнейшего подбора компонентов вентиляционной системы.

Как сделать естественную вентиляцию в частном доме

Исходя из строительных нормативов канал естественной вентиляции обязан организовать воздухообмен при температуре внешних воздушных потоках +5 С, не считая влияние ветра. В летний сезон, присутствие горячего воздуха вне дома, воздухообмен усугубляется, практически о полной остановки циркулирования воздуха.

Зимой, утраты тепла зависят от температурного режима вне дома, чем холоднее, тем больше тяга и тепла уходящего на улицу во время воздухообмена. Утраты тепла через систему вентиляции могут сягнуть до 40%.

В домах каналы вентиляции, как правило, уходят с комнат кухни, туалетов, котельной. Вспомогательные каналы закладывают для проветривания подвальных помещений или пространства под полом. Если частный дом состоит из нескольких этажей, то так же закладываются несколько дополнительных каналов в комнатах на каждом этаже с целью избежания застоя воздуха.

СОПРОТИВЛЕНИЕ КАЛОРИФЕРА ПО ВОДЕ

12.Расчет гидравлического сопротивления, подобранного калорифера (ов) приточных вентиляционных установок.

Сопротивление по теплоносителю вычисляется по формулам. Первая требует довольно большего числа действий и подробно описана на странице сайта: Калориферы КСк. Гидравлическое сопротивление калориферов КСк. Вторая — более простая и решается на основе уже подсчитанных коэффициентов гидравлического сопротивления для конкретных моделей калориферов КСк. Таблица с коэффициентами представлена на вышеупомянутой странице. В этой же таблице, ориентируясь на скорость воды в трубках и массовую скорость воздуха в фронтальном сечении, можно узнать значение водяного сопротивления, не прибегая к расчетам.

ΔPw(кПа) = CW²

Формулы расчета вентиляции

Расчет по площади помещения

Это самый простой расчет. Для жилых помещений нормы регламентируют подавать 3 м3/час свежего воздуха на 1 м2 площади помещения, независимо от количества людей.

Расчет по санитарно-гигиеническим нормам

По санитарным нормам для общественных и административно-бытовых зданий на одного постоянно пребывающего в помещении человека необходимо 60 м3/час свежего воздуха, а на одного временного 20 м3/час.

В случае жилого помещения можно ориентироваться на то, в каком помещении сколько времени проводят жильцы. Например, для спальни рекомендуется принять, что хозяева находятся там постоянно (8 часов подряд), а для кабинета можно принять 1 человек — постоянно, и 1-2 временно.

Расчет по кратностям

В документе (СНиП 2.08.01-89* Жилые здания, Приложение 4) приведена таблица с кратностями воздухообмена по типам помещений (табл.1):

Таблица 1. Кратности воздухообмена в помещениях жилых зданий.
Помещения Расчетная температура зимой,ºС  Требования к воздухообмену
Приток Вытяжка
Общая комната, спальня, кабинет 20 1-кратный
Кухня 18 По воздушному балансу квартиры, но не менее, м3/час 90
Кухня-столовая 20 1-кратный
Ванная 25 25
Уборная 20 50
Совмещенный санузел 25 50
Помещение для стиральной машины в квартире 18 0,5-кратный
Гардеробная для чистки и глажения одежды 18 1,5-кратный
Вестибюль, общий коридор, лестничная клетка, прихожая квартиры 16
Электрощитовая 5 0,5-кратный

Здесь приведена сокращенная версия таблицы, если вы не нашли свой тип помещения — обратитесь к исходному документу (СНиП-у).

Кратность воздухообмена — это величина, которая означает, сколько раз в течение часа воздух в помещении полностью заменяется на новый. Она напрямую зависит от объема помещения. То есть, однократный воздухообмен это когда в течение часа в помещение подали и удалили объем воздуха, равный объему помещения; 0,5 кранный воздухообмен – половине объема помещения и т.д. В этой таблице в двух последних колонках указаны кратности и требования к воздухообмену в помещениях по притоку и вытяжке воздуха соответственно.

Формула расчета вентиляции, включающая нужное количество воздуха выглядит так:

L=n*V (м3/час) , где

n – нормируемая кратность воздухообмена, час-1;

V – объём помещения, м3.

Когда мы считаем воздухообмен для группы помещений в пределах одного здания (к примеру, жилая квартира) или для здания в целом (коттедж), их нужно рассматривать как единый воздушный объём. Этот объём должен отвечать условию ∑ Lпр = ∑ Lвыт То есть, какое количество воздуха мы подаём, такое же должны и удалить.

Таким образом, последовательность расчета вентиляции по кратностям следующая:

  1. Считаем объем каждого помещения в доме (объем=высота * длина * ширина).
  2. Подсчитываем для каждого помещения требуемый воздухообмен по формуле L=n*V.

Для этого выбираем из таблицы 1 норму по кратности воздухообмена. Для большинства помещений нормируется только приток или только вытяжка. Для некоторых (например кухня-столовая) и то, и другое. Прочерк означает, что для данного помещения нормы не установлены.

Для тех помещений, для которых вместо кратности указан минимальный воздухообмен (например, 90м3/ч для кухни), считаем требуемый воздухообмен равным этому рекомендуемому. В самом конце расчета, если уравнение баланса (∑ Lпр и ∑ Lвыт) у нас не сойдется, то значения воздухообмена для данных комнат будем увеличивать до требуемой величины.

Если в таблице нет какого-либо помещения, то норму воздухообмена для него считаем, учитывая что для жилых помещений нормы регламентируют подавать 3 м3/час свежего воздуха на 1 м2 площади помещения. Т.е. считаем воздухообмен для таких помещений по формуле: L=Sпомещения*3.

  1. Суммируем отдельно L тех помещений, для которых нормируется приток воздуха, и отдельно L тех помещений, для которых нормируется вытяжка. Получаем 2 цифры: ∑ Lпр и ∑ Lвыт
  2. Составляем уравнение баланса ∑ Lпр = ∑ Lвыт.

Если ∑ Lпр > ∑ Lвыт , то для увеличения ∑ Lвыт до значения ∑ Lпр увеличиваем значения воздухообмена для тех помещений, для которых мы во 2 пункте приняли воздухообмен равным минимально допустимому значению.


С этим читают