Стабилизатор lm7812 на 12 вольт

Устройства средней сложности

Среднюю сложность изготовления имеют драйверы для светодиодов на 220В. Много времени может занять их настройка, требующая опыта по наладке. Такой драйвер извлечь можно из светодиодных ламп, прожекторов и светильников с неисправной светодиодной цепью. Большинство драйверов также возможно доработать, узнав модель ШИМ-контроллера преобразователя. Параметры на выходе обычно задаются одним или несколькими резисторами. В datasheet указывается уровень сопротивления, необходимый для получения нужного тока. Если установить регулируемый резистор, то на выходе количество Ампер будет настраиваемым (но без превышения указанной номинальной мощности).


Высокой популярностью на Китайских сайтах в 2020 году пользовался универсальный модуль XL4015. По своим характеристикам он подходит для подключения светодиодов с высокой мощностью (до 100 Ватт). Стандартный вариант корпуса данного модуля припаян к плате, выполняющей функции радиатора. Чтобы улучшить охлаждение XL4015, схема стабилизатора тока должна быть доработана с установкой радиатора на корпус устройства.

Многие пользователи просто ставят радиатор сверху, однако эффективность такой установки довольно низкая. Систему охлаждения лучше всего располагать внизу платы, напротив пайки микросхемы. Для оптимального качества ее можно отпаять и установить на полноценный радиатор, используя термопасту. Провода при этом потребуется удлинить. Дополнительное охлаждение можно установить и для диодов, что значительно повысит эффективность работы всей схемы.

Среди драйверов наиболее универсальным считается регулируемый драйвер. В цепи в данном случае устанавливается переменный резистор, который задает количество ампер на выходе. Эти характеристики обычно указываются в следующих документах:

  • в спецификации на микросхему;
  • в datasheet;
  • в типовой схеме включения.

Без добавочного охлаждения микросхемы такие устройства выдерживают 1-3 А (в соответствии с моделью ШИМ-контроллера). Слабое место таких драйверов — нагрев диода и дросселя. Выше 3 А потребуется охлаждение мощного диода и ШИМ-контроллера. Дроссель при этом заменяют более подходящим либо перематывают толстым проводом.

Схема установки

Вне зависимости от того, где вы собираетесь устанавливать ленту, вам нужно подключить ее к питанию. Подложите ленту под бардачок, затем пустите ее под передние сидения, после которых сделайте выход к педалям. В итоге вы должны провести данную подсветку к панели приборов и прикрепить ее канцелярским скотчем. В местах сгибов ее нужно разрезать и спаять, чтобы по всей длине была подсветка. Концы необходимо соединить с контроллером так, чтобы цвета проводов при подключении совпадали. После правильной установки вы сможете сделать выход на дистанционное управление и пультом регулировать подсветку и светомузыку.

Схемы стабилизаторов и регуляторов тока

Существуют как минимум четыре варианта изготовления стабилизаторов напряжения на 12 вольт для авто своими руками:

  1. На кренке.
  2. На паре транзисторов.
  3. На операционном усилителе.
  4. На микросхеме импульсного стабилизатора.

Разберем, какие главные особенности имеет каждая из рассматриваемых модификаций.

На кренке

Для сборки своими руками простейшего стабилизатора для светодиодов для авто на 12 вольт потребуются:

  1. Микросхема LM317 или КРЕН8Б (более точнее КР142ЕН8Б), или KIA7812A.
  2. Резистор на 120 Ом.
  3. Печатное плато или перфорированная панель.

На изображениях наглядно представлено расположение основных компонентов схемы простейшего стабилизатора для светодиодов в авто:

На второй схеме на входе с АКБ применяется диод выпрямляющего типа 1n4007.

На двух транзисторах

Одним из самых популярных автомобильных стабилизаторов напряжения для светодиодов на 12 вольт, который также собирается своими руками, на сегодня является схема на двух транзисторах.

Переменное напряжение номиналом 12 вольт поступает на диодный мостик VD1 – VD4, выпрямляется и, проходя через фильтры С1 С2, сглаживается. Далее ток идет на стабилизатор параметрического типа VD1 и проходит к резистору R2. Затем с его движка передается на ключ составного транзистора VT1 VT2. Уровень его открытости определяется состоянием движка резистора переменного типа R2 – в нижнем положении регулятора транзисторы перекрыты и напряжение не поступает в нагрузку, а в верхнем состоянии регулятора R2 оно максимально и транзисторы полностью открыты, напряжение прилагается к нагрузке.

Приведенная модель стабилизатора напряжения для авто чаще всего применяется для дневных ходовых огней на базе светодиодов и позволяет успешно подстраивать параметры бортового тока под характеристики прибора освещения.

На операционном усилителе

Стабилизатор напряжения на 12 вольт для светодиодов в авто имеет смысл изготовить своими руками, когда возникает необходимость для его работы в расширенном диапазоне рабочих параметров. Ниже приведенная схема такого устройства. Главная его особенность в том, что сам усилитель включен в цепь обратной связи и питается прямо с выхода стабилизатора. Прибор характеризуется коэффициентом стабилизации – порядка 1000, при этом сопротивление на выходе – не более 10 мкОм при КПД около 50%. Ток нагрузки в номинале – не менее 200 мкА, при пульсации напряжения на выходе в двойной амплитуде – меньше 60 мкВ.

Среди главных особенностей его работы выделяются:

  1. Рабочий интервал температуры – от -20 до +60 градусов.
  2. Термический дрейф напряжения на выходе – меньше 0,05%.
  3. Возможность повышения напряжения на выходе до 27-30 вольт.

Для решения последней задачи нужно между выводами «7» и «+25» установить резистор на 200 Ом. Каскад транзистора VT1 выполняет роль динамической нагрузки для VT4 и при этом повышает общий коэффициент усиления. Транзистор П702А можно заменить на аналоги П702 или КТ805, при этом КТ603Г – соответственно на П308 или П309, а также КТ201В и КТ203В — на МП103 либо МП106.

На микросхеме импульсного стабилизатора

Когда от стабилизатора напряжения для авто требуется высокий коэффициент полезного действия, лучше собрать своими руками устройство с использование импульсных составляющих. Наиболее распространенной является ниже представленная схема МАХ771 (или аналогов 770, 772).

Стабилизатор импульсного типа на выходе имеет мощность в 15 ватт. Элементы цепи R1 и R2 разделяют показатели напряжения на точках выход. В случае, когда оно становится выше базового, импульсные выпрямители просто снижаются его выходное значение. В обратном случае прибор будет, напротив, увеличивать данный параметр на выходе.

Монтаж и установка своими руками импульсного стабилизатора напряжения для светодиодов в авто разумна, когда его показатель превышает 16 вольт. При возникновении повышенного падения нагрузки в цепь следует внедрить операционный усилитель.

Нюансы включения ходовых огней

Основные предписания, касающиеся установки, технических параметров и подключения ходовых огней, перечислены в пункте 6.19 ГОСТ Р 41.48-2004. В частности, электрическая функциональная схема ДХО должна быть собрана таким образом, чтобы ходовые огни автоматически включались при повороте ключа зажигания (запуске двигателя). При этом они должны автоматически отключаться, если произведено включение фар головного света.

Пункт 5.12 указанного стандарта гласит о том, что фары головного света (ФГС) должны включаться только после включения габаритов, за исключением подачи кратковременных предупредительных сигналов. При самостоятельном подключении ДХО эту особенность обязательно нужно учитывать.

Правильное подключение ДХО не ограничивается грамотно продуманной функциональной схемой. Самое время вспомнить о блоке стабилизации для светодиодов. В самих ходовых огнях роль ограничителя тока выполняют резисторы, однако, из-за перепадов напряжения, резисторы не могут ограничить ток на одном уровне. Именно поэтому стабилизатор по напряжению в схеме подключения ходовых огней крайне необходим. Иначе срок эксплуатации светодиодных модулей ДХО значительно сокращается ввиду постоянных перепадов бортового напряжения. Некоторые автолюбители заявляют, что подключить ходовые огни можно и без стабилизатора.

Однако данное утверждение легко оспорить. Дело в том, что при каждом скачке напряжения на светодиодном модуле появляется более 12 В, прямой ток через светодиоды превышает номинальное значение, что ведёт к перегреву излучающего кристалла. Яркость светодиодов снижается, такие ДХО уже не смогут выполнять свою непосредственную задачу – издалека предупреждать водителей встречного транспорта, а со временем и вовсе начнут мерцать и выйдут из строя.

Для простоты понимания, нижеприведенные схемы показаны без использования стабилизатора.

Схема стабилизатора напряжения 12 вольт для светодиодов в авто собственными руками на базе LM2940CT-12.0

Схема LM2940CT-12.0

Также для сборки качественного стабилизатора напряжения на автомобиль используют схему LM2940CT-12.0. В качестве корпуса используем абсолютно любой материал, за исключением древесины. Если в машине планируется установить свыше 10 светодиодных ламп, тогда к стабилизатору желательно прикрепить ещё и алюминиевый радиатор.

Возможно, некоторые уже имели опыт работы с таким оборудованием, и скажут, что нет никакой необходимости использовать дополнительные детали — сразу напрямую подключаем светодиоды и наслаждаемся работой. Так сделать можно, но в таком случае лампочки будут постоянно находиться в неблагоприятных условиях, а потому скоро сгорят.

Достоинства всех приведенных схем стабилизатора напряжения 12В собственными руками  — простота сборки. Чтобы собрать стабилизатор, не нужно обладать какими-то особыми умениями и навыками. Но если предоставленные картинки вызывают только недоумение, тогда своими руками не следует пытаться собрать схему.

Блок управления

Наиболее простым и надежным методом подключения считается применение блока управления и отказ от реле. Это полностью продуманный узел, не требующий проведения никаких сложных манипуляций.

Но большая проблема в том, что чаще всего автомобилистам встречается китайский контроллер. Они не соответствуют ГОСТу и обладают низким качеством сборки.

Если использовать блоки управления, то только такие:

Эти производители отлично себя зарекомендовали, и предлагаемые ими блоки действительно работает качественно и эффективно. Причем первый из списка является решением отечественного производства.

Вторые два блока немецкие, продаются в сборе с ДХО, а потому стоят заметно дороже.


А как вы решаете проблему с подключением ДХО, которые фактически стали обязательным элементом?

Спасибо за ваше внимание! Подписывайтесь, оставляйте комментарии и задавайте свои вопросы!

(3 оценок, среднее: 4,00 из 5)

Подпишитесь на обновления и получайте статьи на почту!

Гарантируем: никакого спама, только новые статьи один раз в неделю!

На территории РФ уже более 8 лет действуют поправки в правила дорожного движения (ПДД), в соответствии с которыми движущееся транспортное средство в светлое время суток должно быть обозначено фарами ближнего света, противотуманными фарами (ПТФ) или дневными ходовыми огнями (ДХО). Использование для этих целей головных и противотуманных фар имеет ряд недостатков. Поэтому водители предпочитают покупать готовые модули ходовых огней и самостоятельно их устанавливать в своё авто. Как правильно подключить дневные ходовые огни, чтобы их эксплуатация была безопасной и не противоречила действующим законам?

Еще важно знать 3 нюанса о том, как собрать стабилизатор напряжения 12 вольт собственными руками

  1. Светодиоды желательно подключать через стабилизатор тока. Таким образом можно будет уравновесить колебания электрической сети, и хозяин автомобиля не будут беспокоиться о бросках тока.
  2. Требования к электропитанию нужно также соблюдать, поскольку, таким образом, свой самостоятельно собранный стабилизатор можно будет правильно подстроить под электрическую сеть.
  3. Собирать желательно такой агрегат, который обеспечит достойную устойчивость, надежность и стабильность – стабилизатор должен держаться в течение долгих лет. Именно поэтому на компонентах не стоит дешевить – приобретайте в хороших магазинах электроники.

Схемы простых стабилизаторов

Регулируемый блок питания своими руками

Блок питания необходимая вещь для каждого радиолюбителя, потому, что для питания электронных самоделок нужен регулируемый источник питания со стабилизированным выходным напряжением от 1.2 до 30 вольт и силой тока до 10А, а также встроенной защитой от короткого замыкания. Схема изображенная на этом рисунке построена из минимального количества доступных и недорогих деталей.

Микросхема LM317 является регулируемым стабилизатором напряжения со встроенной защитой от короткого замыкания. Стабилизатор напряжения LM317 рассчитан на ток не более 1.5А, поэтому в схему добавлен мощный транзистор MJE13009 способный пропускать через себя реально большой ток до 10А, если верить даташиту максимум 12А. При вращении ручки переменного резистора Р1 на 5К изменяется напряжения на выходе блока питания.

Так же имеется два шунтирующих резистора R1 и R2 сопротивлением 200 Ом, через них микросхема определяет напряжение на выходе и сравнивает с напряжением на входе. Резистор R3 на 10К разряжает конденсатор С1 после отключения блока питания. Схема питается напряжением от 12 до 35 вольт. Сила тока будет зависеть от мощности трансформатора или импульсного источника питания.

А эту схему я нарисовал по просьбе начинающих радиолюбителей, которые собирают схемы навесным монтажом.

Сборку желательно выполнять на печатной плате, так будет красиво и аккуратно.

Печатная плата сделана под импортные транзисторы, поэтому если надо поставить советский, транзистор придется развернуть и соединить проводами. Транзистор MJE13009 можно заменить на MJE13007 из советских КТ805, КТ808, КТ819 и другие транзисторы структуры n-p-n, все зависит от тока, который вам нужен. Силовые дорожки печатной платы желательно усилить припоем или тонкой медной проволокой. Стабилизатор напряжения LM317 и транзистор надо установить на радиатор с достаточной для охлаждения площадью, хороший вариант это, конечно радиатор от компьютерного процессора.

Желательно прикрутить туда и диодный мост. Не забудьте изолировать LM317 от радиатора пластиковой шайбой и тепло проводящей прокладкой, иначе произойдет большой бум. Диодный мост можно ставить практически любой на ток не менее 10А. Лично я поставил GBJ2510 на 25А с двойным запасом по мощности, будет в два раза холоднее и надёжнее.

А теперь самое интересное… Испытания блока питания на прочность.

Регулятор напряжения я подключил к источнику питания с напряжением 32 вольта и выходным током 10А. Без нагрузки падение напряжения на выходе регулятора всего 3В. Потом подключил две последовательно соединенные галогеновые лампы H4 55 Вт 12В, нити ламп соединил вместе для создания максимальной нагрузки в итоге получилось 220 Вт. Напряжение просело на 7В, номинальное напряжение источника питания было 32В. Сила тока потребляемая четырьмя нитями галогеновых ламп составила 9А.

Радиатор начал быстро нагреваться, через 5 минут температура поднялась до 65С°. Поэтому при снятии больших нагрузок рекомендую поставить вентилятор. Подключить его можно по этой схеме. Диодный мост и конденсатор можно не ставить, а подключить стабилизатор напряжения L7812CV напрямую к конденсатору С1 регулируемого блока питания.

Что будет с блоком питания при коротком замыкании?

При коротком замыкании напряжение на выходе регулятора снижается до 1 вольта, а сила тока равна силе тока источника питания в моем случае 10А. В таком состоянии при хорошем охлаждении блок может находится длительное время, после устранения короткого замыкания напряжение автоматически восстанавливается до заданного переменным резистором Р1 предела. Во время 10 минутных испытаний в режиме короткого замыкания ни одна деталь блока питания не пострадала.

Радиодетали для сборки регулируемого блока питания на LM317

  • Стабилизатор напряжения LM317
  • Диодный мост GBJ2501, 2502, 2504, 2506, 2508, 2510 и другие аналогичные рассчитанные на ток не менее 10А
  • Конденсатор С1 4700mf 50V
  • Резисторы R1, R2 200 Ом, R3 10K все резисторы мощностью 0.25 Вт
  • Переменный резистор Р1 5К
  • Транзистор MJE13007, MJE13009, КТ805, КТ808, КТ819 и другие структуры n-p-n

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать регулируемый блок питания своими руками

Нюансы использования огней


Существует специальный ГОСТ, который определяет и регламентирует установки, технические параметры и само подключение дневных ходовиков.

В регламенте указывается, что схема должна применяться такая, дабы ходовики включались автоматически, когда происходит поворот ключа в замке зажигания. То есть при пуске силовой установки. Но также ДХО обязаны в автоматическом режиме выключаться, как только в работу вступают фары основного света. Здесь, как вы понимаете, речь идет о блоке головных фар (ближний или дальний свет). Также есть правило, указывающее на то, что головной свет должен включаться лишь тогда, когда включаются габариты. Исключением являются кратковременные сигналы для предупреждения других водителей.

Исходя из сказанного выше, можно смело говорить, что через кнопку ДХО выводить не стоит. Так же как и через ручник. А вот в поворотники вмонтировать можно, но тут потребуется подключить 2 дополнительных провода от каждого поворотника.

Все это крайне важно учитывать, подключая ходовики. Ведь вас должно волновать не только то, чтобы не перегорали лампочки

Хотя и это крайне значимый момент.

Без продуманной и грамотной схемы самостоятельно поставить ДХО точно не получится. Ведь все должно работать с отключением при включении дальнего или ближнего света.

Существует целый ряд схем, по которым в теории можно поставить на свою машину ДХО при их отсутствии в штатной комплектации своего автотранспортного средства. Вопрос лишь в том, какую именно схему лучше задействовать.

Выбор устройства

При выборе стабилизатора учитывают следующие характеристики:

  • Размеры. Выбранный стабилизатор должен компактно размещаться в запланированном для него месте для установки с возможностью нормального доступа.
  • Вид. Из имеющихся в продаже устройств наиболее надежными, компактными и недорогими являются стабилизаторы на основе небольших микросхем.
  • Возможность самостоятельного ремонта. Так как даже самые надежные устройства выходят из строя, необходимо отдавать предпочтение ремонтопригодным стабилизаторам, радиодетали к которым имеются в продаже в достаточном количестве и по доступной цене.
  • Надежность. Выбранный стабилизатор должен обеспечивать постоянное значение напряжения без значительных отклонений от заявленного их производителем диапазона.
  • Стоимость. Для электрической системы автомобиля достаточно приобрести устройство стоимостью до 200 рублей.

Также при выборе стабилизатора необходимо учитывать отзывы их покупателей, которые можно найти на специализированных форумах и сайтах.

Простой СН, сделанный своими руками

Стабилизатор напряжения 12 вольт для светодиодов, подсветок автомобильных бортовых систем быстро и удобно выполнять, используя для этого микросхемы: LM317, LD1084, L7812, КРЕН 8Б и им подобные устройства. Несколько диодов, сопротивление и сама микросхема – вот составляющие такого СН.

Стабилизатор на LM317

В зависимости от варианта изготовления корпуса LM317 подбирают расположение деталей на плате.

LM317 с креплением на теплоотвод

Изготовление стабилизатора сводится к следующему:

  • к выходу (Vout) припаивают сопротивление с номинальным значением 130 Ом;
  • к контакту входа (Vin) присоединяют провод, подающий напряжение для стабилизации;
  • регулировочный вход (Adj) подключают ко второму выводу резистора.

При подключении в качестве нагрузки светодиодных фонарей, лент и т.д. радиатор не требуется. Сборка занимает 15-20 минут при минимуме деталей. Используя несложную формулу, можно рассчитывать величину сопротивления R для получения определённой величины допустимого тока нагрузки.

Схема СН на LM317

Схема на микросхеме LD1084

Поддержанию напряжения 12 В неизменным для устройств светодиодной иллюминации, подключённой к бортовой сети автомобиля, поможет применение данной микросборки.

Даташит LD1084

Здесь для сборки самодельного СН в цепь обвязки микросхемы включаются:

  • два электролитических конденсатора по 10 мкФ * 25 В;
  • резисторы: 1 кОм (2 шт.), 120 Ом, 4,7 кОм (можно постоянный);
  • диодный мост RS407.

Устройство собирается следующим образом:

  • напряжение, снимаемое с диодного моста выпрямителя, подаётся на вход LD1084;
  • на контакт, управляющий режимом стабилизации (Adj), присоединяют эмиттер транзистора КТ818, база которого соединена через два одноколонных сопротивления с цепями питания света фар (ближнего и дальнего);
  • выходная цепь микросхемы соединена с резисторами R1 и R2, а также с конденсатором.

Кстати. Резистор R2 можно брать не переменный, а подстроечный, выставив с его помощью величину выходного напряжения 12 В.

СН для бортовой сети

Стабилизатор на диодах и сборке L7812

Подобная микросхема в связке с диодом и конденсаторами может снабжать светодиоды стабильным напряжением 12 В.

Схема построена по ниже изложенному принципу:

  • диод Шоттки 1N401 пропускает через себя ток от плюсовой клеммы аккумулятора и подаёт его на вход микросхемы. При этом «+» электролита (конденсатора на 330 мкФ) также соединён с катодом диода;
  • на выход L7812 присоединяют цепь нагрузки и «+» конденсатора ёмкостью 100 мкФ;
  • все минусовые клеммы (от аккумулятора и обоих электролитических конденсаторов) соединяются с управляющим входом микросхемы.

Электролитические конденсаторы подбирают на напряжение не ниже 25 В.

Схема стабилизатора 12 В на ИМС L7812

Самый простой стабилизатор – плата КРЕН

Схемы с использованием крен довольно популярны. Так называют ИМС, в маркировку которых входят сочетания букв КР и ЕН. Это мощные СН, позволяющие выдавать на нагрузку ток до 1,5 А. Они имеют на выходе стабильные 12 В при подаче на вход напряжения до 35 В.

Схема с использованием этой микросхемы собирается так:

  • напряжение с плюсовой клеммы АКБ (аккумуляторной батареи) на вход крен подаётся через диод 1N4007, он защищает цепь аккумулятора от обратных напряжений;
  • минусовая клемма АКБ соединяется с управляющим электродом КРЕН;
  • напряжение с выхода подаётся на нагрузку.

При необходимости микросхему прикручивают к радиатору.

КР142ЕН8Б, схема подключения

Сборка своими руками стабилизаторов напряжения на 12 В с использованием схем линейных и интегральных СН не составляет особого труда. При этом необходимо следить за температурой нагрева корпуса элементов и при Т0С выше допустимой устанавливать их на теплоотводы (радиаторы).

Сборка устройства

Все стандартные действия сборки не будем описывать, отметим лишь основные моменты. Транзистор надо размещать на теплоотвод. Почему? Потому что схема линейная и при больших токах транзистор будет сильно нагреваться. Из чего изготовить радиатор? Его можно сделать из обычного алюминиевого уголка и закрепить непосредственно на вентилятор блока питания. И, несмотря на то, что по размерам радиатор достаточно небольшой, благодаря интенсивному обдуву он прекрасно справится со своей задачей.

К радиатору прикручивается через термопасту транзистор, в этой схеме он используется полевой, N-канальный IRFZ44 с максимальным током 49 А. Так как радиатор изолирован от основной платы и корпуса, то транзистор приворачивается напрямую без изоляционных прокладок.

Плату стабилизатора через латунную стойку закрепляется на этот же алюминиевый уголок. Для регулировки выходного тока используется переменный резистор на 5 кОМ. Провода, чтобы не болтались, фиксируются пластиковыми стяжками.

В результате, должна получиться следующая схема подключения данного стабилизатора для зарядного устройства.

Блок питания может быть абсолютно любым, как компьютерным блоком питания, так и обычным трансформатором. Шнур для подключения в розетку используется обычный компьютерный.

Всё готово. Можно теперь использовать такой регулируемый стабилизатор напряжения для зарядного устройства. Надо отметить схема простая и недорогая: одновременно выполняет функции стабилизатора и зарядного устройства.

Как избежать 3 ошибки при пайке схемы

  1. Перед началом всех работ по спайке, обязательно выбираем наиболее подходящий паяльный аппарат, для сборки микросхемы. Тот старый, что лежит дома или в гараже подойдет только опытным людям, новичок же испортит плату, не сумев справиться с мощностью. Наиболее подходящий диапазон напряжения для соединения плат и проводков — 15-30 Ватт. Большую мощность не используем, иначе плата сгорит и придется начинать все сначала, с новыми деталями.
  2. Перед тем, как начинать соединения деталей посредством пайки, удостоверьтесь, что схема хорошо очищена. Для качественной обработки используют простой состав – смешивается любое мыло с чистой водой. После чистая салфетка обмакивается в приготовленный раствор и плата очень качественно протирается по всей поверхности. Если на металле останутся следы мыла, то вытираем их аккуратно сухой салфеткой. На платах часто замечают довольно плотные отложения. Чтобы избавиться от них, придется сходить в магазин с электротоварами и купить специальный очищающий состав. Продавцы подскажут все необходимое. Участок обрабатываем, пока не появится легкий металлический блеск.
  3. Контакты на плате располагаем в правильной последовательности – для начала работаем с маленькими резисторами, а затем переходим на большие детали. Если сначала закрепить все крупные части, то мелкие детали очень неудобно станет присоединять – большие компоненты помешают.

Не стоит пренебрегать советами. Они позволят создать более качественное соединение, а значит и долговечность стабилизатора.

Материал и инструменты

Монтаж светодиодной ленты в машину не занимает много времени и усилий, но чтобы процесс прошел быстро и вы максимально качественно сделали подсветку для своего салона, нужно запастись терпением и некоторыми инструментами. Для этого вам понадобятся: канифоль, изоляционная лента, ножницы, коннекторы, паяльник, припой, обжим для наконечников, инструмент для крепежа ленты, профиль, который имеет влагоустойчивость. Также для монтажа данного аксессуара вам понадобятся непосредственно сами провода, усилитель для их работы, а также контроллер, который будет отвечать за распределение напряжения. Чтобы не садился аккумулятор автомобиля, и система работала без ущерба для транспорта, нужно приобрести блок питания, который будет полностью соответствовать мощности, плотности виду и типу лент.


С этим читают