Единица измерения освещенности

Как правильно измерять яркость света

При тестировании лампочек и других осветительных приборов досконально выяснить уровень их яркости затруднительно, в виду округлости их поверхности. Чаще всего этот показатель определяют у мониторов, дисплеев и ТВ экранов.


Для того, чтобы получить верные показатели, необходимо соблюсти следующие условия:

  • Экранировать объектив от посторонних источников света. В помещении можно производить замеры в условиях полной темноты.
  • На объект измерения не должна падать тень (в том числе от прибора и человека, снимающего показания яркомера).

Тень на объекте измерения яркости

  • В поле зрения датчика не должно находиться ничего, кроме измеряемого источника света.
  • В начале и конце измерений проверяют уровень напряжения в сети.
  • При наличии естественного источника света, отношение его освещенности к этому параметру не может превышать 0,1.
  • Измерения производятся при нормальных погодных условиях.

Порядок измерения

Необходимый порядок действий для измерения уровня яркости:

  • Включить яркомер и установить на нем режим измерения.
  • Расположить его как можно ближе к источнику света, перпендикулярно лучам (параллельно поверхности).

Обратите внимание! Если поверхность горячая, расстояние до объекта измерения должно быть не меньше 1 см

  • Во время снятия показаний прибор должен находиться в статическом положении.
  • Произвести замеры в нескольких точках, затем рассчитать среднее значение.

Характеристики света

Одной из субъективных характеристик света, воспринимаемой человеком в виде осознанного зрительного ощущения, является его цвет, который для монохроматического излучения определяется главным образом частотой света, а для сложного излучения — его спектральным составом.

Свет может распространяться даже в отсутствие вещества, то есть в вакууме. При этом наличие вещества влияет на скорость распространения света.

Скорость света в вакууме равна 299 792 458 м/с точно.

Свет на границе между средами испытывает преломление и/или отражение. Распространяясь в среде, свет поглощается и рассеивается веществом. Оптические свойства среды характеризуются показателем преломления, действительная часть которого равна отношению фазовой скорости света в вакууме к фазовой скорости света в данной среде, мнимая часть описывает поглощение света. В изотропных средах, где распространение света не зависит от направления, показатель преломления есть скалярная функция (в общем случае — от времени и координаты). В анизотропных средах он представляется в виде тензора. Зависимость показателя преломления от длины волны света — оптическая дисперсия — приводит к тому, что свет разных длин волн распространяется в среде с разной скоростью, благодаря чему возможно разложение немонохроматического света (например, белого) в спектр.

Как любая электромагнитная волна, свет может быть поляризованным. У линейно поляризованного света определена плоскость (т. н. плоскость поляризации), в которой происходят колебания электрической составляющей электромагнитной волны. У эллиптически (в частности циркулярно) поляризованного света электрический вектор, в зависимости от направления поляризации, «вращается» по или против часовой стрелки.

Неполяризованный свет является смесью световых волн со случайной поляризацией. Поляризованный свет может быть выделен из неполяризованного пропусканием через поляризатор или отражением/прохождением на границе раздела сред при падении на границу под определённым углом, зависящим от показателей преломления сред (см. угол Брюстера). Некоторые среды могут вращать плоскость поляризации проходящего света, причём угол поворота зависит от концентрации оптически активного вещества, — это явление используется, в частности, в поляриметрическом анализе веществ (например, для измерения концентрации сахара в растворе).

Количественно интенсивность света характеризуют с помощью фотометрических величин нескольких видов. К основным из них относятся энергетические и световые величины. Первые из них характеризуют свет безотносительно к свойствам человеческого зрения. Они выражаются в единицах энергии или мощности, а также производных от них. К энергетическим величинам в частности относятся энергия излучения, поток излучения, сила излучения, энергетическая яркость, энергетическая светимость и облучённость.

Каждой энергетической величине соответствует аналог — световая фотометрическая величина. Световые величины отличаются от энергетических тем, что оценивают свет по его способности вызывать у человека зрительные ощущения. Световыми аналогами перечисленных выше энергетических величин являются световая энергия, световой поток, сила света, яркость, светимость и освещённость.

Учёт световыми величинами зависимости зрительных ощущений от длины волны света приводит к тому, что при одних и тех же значениях, например, энергии, перенесённой зелёным и фиолетовым светом, световая энергия, перенесённая в первом случае, будет существенно выше, чем во втором. Такой результат отражает тот факт, что чувствительность человеческого глаза к зелёному свету выше, чем к фиолетовому.

Видимый свет — электромагнитное излучение с длинами волн ≈ 380—760 нм (от фиолетового до красного) включительно.

В каких единицах измеряют освещение

Многие обыватели часто задают вопрос – в чём измеряется свет? Для оценки эффективности освещения рассчитывают суммарное количество единиц измерения освещенности в системе СИ. Это — люкс и люмен.

Единица освещенности поверхности определяется в Люксах (lux) имеет следующие характеристики:

  • Один lux — равномерно освещенная световым потоком 1 лм площадь 1 м².
  • Если свет падает под углом, то освещенность снижается.
  • Освещённость снижается с увеличением расстояния от светового источника.

Важно! При больших люменах светильник ярче, а при достаточных значениях люксов лучше освещена поверхность. Нужно ли измерять степень освещенности и ее соответствие нормам? Яркий или тусклый свет ухудшает зрение, разрушает сетчатку глаза

Недостаток яркости снижает работоспособность и настроение. На видимом спектре человеческий глаз чувствителен к частоте зеленого цвета. При восприятии зеленого глаз расслабляется, успокаивается нервная система

Нужно ли измерять степень освещенности и ее соответствие нормам? Яркий или тусклый свет ухудшает зрение, разрушает сетчатку глаза. Недостаток яркости снижает работоспособность и настроение. На видимом спектре человеческий глаз чувствителен к частоте зеленого цвета. При восприятии зеленого глаз расслабляется, успокаивается нервная система.

Зеленый цвет

Освещенность измеряется приборами с фотодатчиками.

Строение человеческого глаза

Почти всегда, когда речь заходит о зрении, мы говорим, что видит глаз. Это неверное утверждение, ибо в первую очередь воспринимает мозг. Глаз — это только инструмент, который передает информацию о световом потоке в главный компьютер. И, как любой инструмент, вся система восприятия цветов имеет свои ограничения.

В сетчатке человека есть два различных типа клеток — колбочки и палочки. Первые отвечают за дневное зрение и лучше воспринимают цвета. Вторые предоставляют ночное зрение, благодаря палочкам человек различает свет и тень. Но они плохо воспринимают цвета. Палочки также более чувствительны к движениям. Именно поэтому, если человек идет по освещенному луной парку или лесу, он замечает каждое покачивание ветвей, каждый вздох ветра.

Эволюционная причина такого разделения проста: у нас одно солнце. Луна светит отраженным светом, а значит, ее спектр не сильно отличается от спектра центрального светила. Поэтому день делится на две части — освещенную и темную. Если бы люди жили в системе двух или трех звезд, то наше зрение, возможно, имело бы больше компонентов, каждый из которых был приспособлен к спектру одного светила.

Надо сказать, на нашей планете есть существа, чье зрение отличается от человеческого. Пустынные жители, например, глазами улавливают инфракрасный свет. Некоторые рыбы видят ближний ультрафиолет, так как это излучение проникает в толщу воды глубже всего. Наши домашние питомцы кошки и собаки иначе воспринимают цвета, и их спектр урезан: они лучше приспособлены к светотени.

Но и люди все разные, как мы уже упоминали выше. Некоторые представители человечества видят ближний инфракрасный свет. Нельзя сказать, что им были бы не нужны тепловизоры, но они способны воспринимать чуть более красные оттенки, чем большинство. У других развита ультрафиолетовая часть спектра. Такой случай описывается, например, в фильме «Планета Ка-Пэкс». Главный герой утверждает, что он прибыл из другой звездной системы. Обследование выявило у него способность видеть ультрафиолетовое излучение.

Доказывает ли это, что Прот — инопланетянин? Нет. Некоторым людям это под силу. К тому же ближний ультрафиолет вплотную прилегает к видимому спектру. Неудивительно, что кто-то воспринимает чуть больше. А вот Супермен точно не с Земли: рентгеновский спектр слишком далеко от видимого, чтобы такое зрение можно было объяснить с человеческой точки зрения.

Организация освещения в жилых помещениях

С помощью осветительных приборов можно равномерно подсветить всю комнату и разделить ее на отдельные зоны (рабочий стол, кресло для отдыха, зеркало и т. д.). Раньше считалось, что для того, чтобы организовать качественное освещение, нужно знать только количество Ватт на квадратный метр, однако это мнение устаревшее. Чтобы провести правильные расчеты, необходимо определить сколько Лк и Лм нужно на 1м². Учитывая эти важные параметры, вы сможете определиться с количеством лампочек и светильников.

При организации освещения нужно учитывать особенности отдельных жилых помещений:

  1. В прихожей искусственное освещение необходимо, так как здесь обычно нет окон. Для подсветки можно использовать светильники, которые излучают направленный пучок света с широким углом рассеивания.
  2. Гостиная – это наиболее функциональная комната, которая может совмещать зону отдыха, работы, занятий спортом, приема пищи и т. д. Здесь применяется многоуровневая подсветка с применением разных типов приборов: потолочные, настенные, настольные, напольные. Они помогут равномерно осветить помещение и выделить отельные функциональные участки. Для акцентирования внимания на особенностях интерьера применяют светящиеся ленты.
  3. Кухня имеет 2 основных «светящихся» центра – обеденный стол и рабочая поверхность. Потолочный светильник поможет осветить место для приема пищи, а точечные устройства или диодные ленты применяют для подсветки разделочного стола.
  4. Спальня — это место для отдыха и расслабления, поэтому свет в ней должен быть мягким и теплым. За фоновую подсветку выступает небольшая люстра или точечные приборы. Дополнить ее можно светильниками возле кровати или туалетного столика.

В санузлах можно сочетать светильники фонового и местного освещения. Основной прибор устанавливают на потолке или стене, а дополнительные – возле зеркала, умывальника и т. д. Для ванной стоит покупать устройства с высоким уровнем влагозащищенности.

Раньше для освещения квартир чаще применяли лампы с нитью накала, но сейчас они уступают более современным галогенным и люминесцентным устройствам. Однако лидером среди всех источников света являются светодиодные лампочки. Они наиболее долговечные, экономичные, прочные, безопасные, имеют широкий спектральный диапазон и сейчас стоят дешевле, чем раньше.

При выборе светодиодных лампочек отдавайте предпочтение проверенным маркам, так как на рынке появилось много подделок.

Что такое освещение

Свет – это один из видов электромагнитных колебательных движений. Отличается он от радио- и электрических волн тем, что их длина значительно меньше. Частицы (кванты и фотоны) излучают эти световые потоки порционно. Когда они попадают на глаз человека, то зрительный нерв превращает их в ощущения (яркости и цвета, преобразуемые в изображение).

Общее освещение комнаты

Известно два вида освещения:

  • Естественное, источником которого служит излучение от Солнца;
  • Искусственное, производимое различными специальными устройствами и установками.

Эти виды освещения комбинируются, и на их основе создается множество других классификаций. Среди наиболее известных из них можно выделить следующие:

  • Общее – создает достаточный для комфортного пребывания человека в помещении уровень освещенности;
  • Зональное – воздействующее на конкретную область (зону) помещения и обеспечивающее повышенный уровень света в ней;
  • Местное – предназначено для выделения объекта и места вокруг него (клавиатура, место для чтения, рабочий стол);
  • Декоративное – стало популярным сравнительно недавно и используется для украшения тех или иных интерьерных решений и для повышения комфорта;
  • Аварийное – включается на производствах и предприятиях во время аварийной ситуации, когда обычные электроустановки перестают нормально функционировать.

Важно! В свою очередь эти виды могут подразделяться и на другие, более мелкие категории в зависимости от функциональных особенностей и требований. Пример аварийного освещения

Пример аварийного освещения

Нормы и порядок расчета

Требования к освещенности зависят от назначения конкретного помещения и вида деятельности человека. Стандарты, по которым измеряется показатель, установлены в ГОСТ Р 54944-2012, нормы – в СНиП. Все параметры относятся не только к полу, но и к плоскостям столов. Доступны таблицы, по которым можно определить люксы для любого объекта.

При разработке системы освещения для жилого дома (квартиры) можно воспользоваться данными из этой таблицы:

Норма согласно СНиП (лк) Помещение
20 Проходы на чердаки, подвалы
20 Электрощитовые, котельные, вентиляционные камеры
20 Лестницы
50 Ванные. душевые, санузлы
50 Коридоры и холлы в домах (квартирах)
75 Гардеробные комнаты
100 Сауны, раздевалки, бассейны
150  Жилые комнаты и кухни
150 Тренажерные залы
200 Детские комнаты
300 Библиотеки, кабинеты

Расчет осуществлятеся из 2-х этапов:

  • определения требуемого уровня свечения;
  • определения количества лампочек.

Формула для расчета свечения:

Н*П*К, где:

Н – норма (согласно таблице);

П – площадь помещения;

К – коэффициент, зависящий от высоты потолков (1 для 2,5-2,7 м, 1,2 для 2,7-3 м, 1,5 для 3-3,5 м, 2 для 3,5-4,4 м).

Чтобы рассчитать количество ламп, полученный результат нужно разделить на люмены, указанные в их технической документации выбранных для монтажа лампочек.

Если проводятся работы по капитальному ремонту или реконструкции, расчетами занимаются сотрудники подрядчика.

Они учитывают особенности конструкции и материалов светильников, световое отражение от стен, полов, потолков, предметов интерьера в зависимости от характеристик облицовочного материала. Вид светильников предварительно обозначаются в проектной документации и техническом задании.

При подсчетах используется формула:

К=(Е*к*S*к1)/(Ф*к2), где:

Е – норма для горизонтально расположенных плоскостей;

к – коэффициент, рассчитанный с учетом отклонений в работе системы при перегорании отдельных источников света и перемещении предметов интерьера;

S – площадь помещения;

к1 – коэффициент неравномерности;

Ф – световой поток от одной лампочки (зависит от мощности и типа);

к2 – коэффициент в долях.

При самостоятельном проведении измерений и подсчетов следует учесть, что отраженный свет по мощности может мало отличаться от прямого.

2.1. Энергетические единицы и соотношения между ними

в однородных изотропных средах переносит энергию в направлении, которое указывается .

Энергия измеряется в джоулях: .

2.1.1. Поток излучения

Поток излучения (лучистый поток) – это величина энергии, переносимой полем в единицу времени через данную площадку: , .

Спектральная плотность потока излучения – это функция, показывающая распределение энергии по спектру излучения:

 

Общий суммарный поток для всех длин волн в диапазоне от до :

2.1.2. Поверхностная плотность потока энергии (освещенность, светимость)

Поверхностная плотность потока энергии – это величина потока, приходящегося на единицу площади:

,
  

Если площадка освещается потоком, то поверхностная плотность потока энергии будет иметь смысл энергетической освещенности или облученности . Если поток излучается площадкой, то поверхностная плотность потока энергии будет иметь смысл энергетической светимости .

Спектральная плотность поверхностной плотности потока показывает распределение светимости или освещенности по спектру излучения:

2.1.3. Сила излучения

Телесный угол данного конуса равен отношению площади поверхности, вырезанной на сфере конусом, к квадрату радиуса сферы, измеряется в стерадианах (в сфере )

,
    

Сила излучения (энергетическая сила света) – это поток излучения, приходящийся на единицу телесного угла, в пределах которого он распространяется:

,
   

За единицу энергетической силы света приняты сила излучения такого , у которого в пределах равномерно распределяется поток излучения в . За направление силы света принимают ось телесного угла, в пределах которого распространяется поток излучения.

Поток называется равномерным, если в одинаковые телесные углы, выделенные по какому-либо направлению, излучается одинаковый поток.

Для неравномерного потока существует понятие средней сферической силы света:  

Спектральная плотность силы излучения показывает распределение силы излучения по спектру: 

2.1.4. Энергетическая яркость

Энергетическая яркость – это величина потока, излучаемого единицей площади в единицу телесного угла в данном направлении:

,
     
где – угол между направлением излучения и нормалью к площадке.

За единицу энергетической яркости принимают яркость плоской поверхности в , которая в перпендикулярном направлении имеет энергетическую силу света в .

Спектральная плотность энергетической яркости показывает распределение энергетической яркости по спектру:

2.1.5. Инвариант яркости вдоль луча

Яркость постоянна (инвариантна) вдоль луча при отсутствии потерь энергии:

Если среда неоднородна (показатель преломления меняется), то используется приведенная яркость (инвариант яркости):

    

Следствие инврианта яркости:

оптическая система не может увеличивать яркость проходящего через нее излучения, она может лишь уменьшить яркость за счет поглощения или рассеяния света.

2.1.6. Поглощение света средой

Энергетический коэффициент пропускания – это отношение энергетического светового потока , пропущенного данным телом, к энергетическому потоку , упавшему на него :

   

Если среда поглощает, то инвариант яркости вдоль луча выглядит следующим образом:  

Спектральная плотность пропускания показывает распределение коэффициента пропускания по спектру.

Оптическая плотность среды – логарифм величины, обратной пропусканию:  

Единица измерения

Освещенностью называют световую величину, которая равно потоку света, падающему на поверхность, к его площади. Считается прямо пропорциональной световому источнику. Отличается равномерным распределением на площади. Находится делением канделовой силы света на расстояние до светоисточника и перемноженного на косинус угла падения солнечных лучей.

Обратите внимание! Измеряется согласно международной классификационной системе в люксах, что равно десяти фотам или одному люмену на один квадратный метр. Поэтому единицей измерения освещенности является именно люкс

Стоит отметить, что его можно перевести в канделу и ватт.

Кандела

Кандела, что в переводе с английского свеча, является единицей измерения силы светоисточника по международной единичной системе. Была сформирована в 1979 году. Равна 540⋅1012 Гц или 683 лм/Вт. Измеряется в канделах разные светоисточники, к примеру, лампа накаливания со свечой, сверхъярким светодиодом, люминесцентной лампой и солнцем. Дополнение: примерная солнечная сила в канделах равна 2,8⋅10, что в переводе на ватты 3,83⋅1026

Люмены и люксы

Люмен является единицей измерения, которая равна потоку солнечного света, который испускает источник, равный канделе и стерадиану. В люменах измеряется весь светопоток, однако при вычислении не учитывается сила линзы с отражателям, поэтому получающийся показатель — не прямой параметр оценки яркости с КПД источника.

Люкс — измерительная подъединица люмена по СИ. В отличие от люмена, люкс дает оценку светового потока, который падает на квадратный метр. Тот же дает понимание того, какой световой поток у светоисточника.

Обратите внимание! То есть люкс это характеристика, которая позволяет узнать КПД светильника на конкретной площади. Чтобы лучше понять их основное отличие, стоит рассмотреть рисунок

Он наглядно показывает, как при увеличении высоты расширяется освещение и как убывает яркость


Чтобы лучше понять их основное отличие, стоит рассмотреть рисунок. Он наглядно показывает, как при увеличении высоты расширяется освещение и как убывает яркость.

Люмен и ватт

Как было изложено выше, люменом называют полноценное число света от светоисточника. Ватт — показатель того, какая мощность, тепловой поток, звуковая энергия и полная мощность электротока или излучения у прибора. Один ватт равен 100 люменам. Перевод самостоятельно можно осуществить по специальным формулам или с содействием калькуляторов. Нередко все необходимые показатели даны на самом приборе.

Стоит отметить, что самыми лучшими показателями обладают современные светодиоды. Они имеют высокую яркость, гармоничное спектровое распределение, долговечность, устойчивость к разного рода воздействиям. Интересно, если взять приборы с одинаковой освещенностью, то ими будет потребляться в десять раз меньше электрической энергии, чем лампами накаливания.

Обратите внимание! Учитывая реальный срок службы и сниженные эксплуатационные инвестиционные расходы, то покупка этих изделий будет экономически целесообразной. Перевод люмена в ватты

Перевод люмена в ватты

Кратные единицы

Чтобы было удобно, люменные единицы разбирают на части. Так, есть килолюмены, мегалюмены и гигалюмены. В одном килолюмене 1000 люмен, мегалюмене — 1000000, а гигалюмене — 1000000000. Также есть еще величины с приставками дека, гекто, тера,пета, экса, зетта и иотта.

Дольные единицы

К дольным величинам применяется тот же подход. Базовыми являются миллилюмены, микролюмены и нанолюмины, которые равны 10 в −3 степени, 10 в минус 6 степени и 10 в минус 9 степени. Также имеются приставки деци, санти, пико, фемто, атто, зепто и иокто. Стоит отметить, что дольные, как и кратные величины используются только в профессиональных условиях и при выполнении физических задач. В жизни не используются для расчетов меры освещенности и прочих параметров.

Главные характеристики света

Человек видит спектр цветов – малую часть диапазона электромагнитных волн. Его характеристики влияют на комфортность среды пребывания и самочувствие человека. Существует определение для одного из свойств – световой поток (Ф), который измеряют в люменах (лм). Мощность светового потока источника характеризует вызванное ощущение восприятия света. По его распределению для замкнутого пространства выделяют потоки света: прямого, рассеянного, отраженного. Чем больше света, тем выше число люменов.

Важно! Этот параметр не определяет интенсивность, яркость или производительность свечения, потому что учитывает весь рассеянный поток. Для того, чтобы измерить световой поток требуется много времени и при этом нужно учитывать пространственные характеристики явления

Главная характеристика источника – сила света (I), определяющая интенсивность излучения в направлении потока. Она вычисляется через частное светового потока (Ф) и телесного угла (ꭥ) в стерадианах (ср), внутри которого распределяется. В СИ единицу измерения силы света, кандела, обозначают кд, cd.

Важно! Восковая свеча излучает с около одной канделы (от лат. candela), и ранее эта единица измерения называлась «свечой»

Величина кандел показывает световое излучение точечного источника света на самом интенсивном его направлении.

Покупатели ламп обычно оценивают яркость по мощности потребления (Вт) источника. При хорошей яркости получается четкое и контрастное видение предметов. Однако и слабый, и очень яркий свет неблагоприятен для деятельности человека. Яркость (L) определяется плотностью силы света в направлении поверхности и вычисляется делением I на площадь проекции на перпендикулярную поверхность (зависит от cos угла).

Измеряют показатель яркости (L) света в кд/м². Главной характеристикой восприятия светового ощущения глазами является яркость освещаемой поверхности или источника.

Световая отдача (H) фиксирует экономичность преобразования электрической мощности в световую. При переходе от электрической энергии к световой появляются потери, что вызывает снижение показателей яркости излучения. Измеряют световую отдачу в люменах на ваттах. Можно вычислить световой поток, зная среднее значение световой отдачи.

Практичную светоотдачу имеют светодиодные лампы (потери менее 5%).

Важно! Существуют стандарты качества освещения для помещений, а также для растений или для животных. Освещенность характеризуется отношением светового потока к площади поверхности

Общие сведения

Сила света — это мощность светового потока внутри определенного телесного угла. То есть, сила света определяет не весь свет в пространстве, а только свет, излучаемый в определенном направлении. В зависимости от источника света, сила света уменьшается или увеличивается по мере изменения телесного угла, хотя иногда эта величина одинакова для любого угла, если источник равномерно распространяет свет. Сила света — физическое свойство света. Этим она отличается от яркости, так как во многих случаях, когда говорят о яркости, то подразумевают субъективное ощущение, а не физическую величину. Также, яркость не зависит от телесного угла, а воспринимается в общем пространстве. Один и тот же источник с неизменной силой света может восприниматься людьми как свет разной яркости, так как это восприятие зависит от окружающих условий и от индивидуального восприятия каждого человека. Также, яркость двух источников с одинаковой силой света может восприниматься по-разному, особенно если один дает рассеянный свет, а другой — направленный. В этом случае направленный источник будет казаться ярче, несмотря на то, что сила света обоих источников одинакова.

Сила света рассматривается как единица мощности, хотя она отличается от привычного понятия о мощности тем, что она зависит не только от энергии, излучаемой источником света, но и от длины световой волны. Чувствительность людей к свету зависит от длины волны и выражается функцией относительной спектральной световой эффективности. Сила света зависит от световой эффективности, которая достигает максимума для света с длиной волны в 550 нанометров. Это — зеленый цвет. Глаз менее чувствителен к свету с большей или меньшей длиной волны.

В системе СИ сила света измеряется в канде́лах (кд). Одна кандела приблизительно равна силе света, излучаемого одной свечой. Иногда также используются устаревшая единица, свеча (или международная свеча), хотя в большинстве случаев эта единица заменена канделами. Одна свеча примерно равна одной канделе.

Если измерять силу света, используя плоскость, которая показывает распространение света, как на иллюстрации, то видно, что величина силы света зависит от направления на источник света. Например, если принять направление максимального излучения светодиодной лампы за 0°, то измеренная сила света в направлении 180° будет намного ниже, чем для 0°. Для рассеянных источников величина силы света для 0° и 180° не будет сильно отличаться, а возможно будет одинаковой.

На иллюстрации свет, распространяемый двумя источниками, красным и желтым, охватывают равную площадь. Желтый свет — рассеянный, подобно свету свечи. Его сила — примерно 100 кд, независимо от направления. Красный — наоборот, направленный. В направлении 0°, там, где излучение максимально, его сила равна 225 кд, но эта величина быстро уменьшается при отклонениях от 0°. Например, сила света равна 125 кд при направлении на источник 30° и всего 50 кд при направлении 80°.

Обозначение параметра в СИ

Поскольку Iv является физической величиной, то ее можно рассчитать. Для этого используется специальная формула. Но прежде, чем дойти до формулы, необходимо разобраться в том, как искомая величина записывается в системе СИ. В этой системе наша величина будет отображаться как J (иногда она обозначается как I), единица измерения которой буде кандела (кд). Единица измерения отражает, что Iv, испускаемая полным излучателем на площади сечения 1/600000 м2. будет направляться в перпендикулярном данному сечению направлении. При этом температура излучателя будет раной уровню, при котором при давлении 101325 Па будет наблюдаться затвердение платины.

Поскольку световой поток в пространстве распространяется неравномерно, то необходимо ввести такое понятие, как телесный угол. Он обычно обозначается символом .Сила света используется для расчетов, когда применяется формула размерности. При этом данная величина через формулы связана со световым потоком. В такой ситуации световой поток будет произведением Iv на телесный угол, к которому и будет распространяться излучение. Световой поток (Фv) есть произведение силы света на телесный угол, в котором распространяется поток. Ф=I .

Формула светового потока

Из этой формулы следует, что Фv представляет собой внутренний поток, распространяемый в пределах конкретного телесного угла (один стерадиан) при наличии Iv в одну канделу.

При этом через световое излучение можно связать Iv и мощность. Ведь под Фv понимается еще и величина, которая характеризует мощность излучения светового излучения при восприятии его усредненным человеческим глазом, имеющего чувствительностью к излучению определенной частоты. В результате из вышеприведенной формулы можно вывести следующее уравнение:

Формула для силы света

Это отлично видно на примере светодиодов. В таких источниках светового излучения его сила обычно оказывается равной потребляемой мощности. В результате, чем выше будет потребление электроэнергии, тем выше будет уровень излучения. Как видим, формула для расчета нужной нам величины не так и сложна.

Отличие освещенности от светового потока

При этом многие путают единицы измерения Люмены с Люксами. Запомните, в люксах измеряется именно освещенность.

Как наглядно объяснить их разницу? Представьте себе давление и силу. С помощью всего лишь маленькой иголки и небольшой силы, можно создать высокое удельное давление в отдельно взятой точке.


Также и с помощью слабого светового потока, можно создать высокую освещенность в отдельно взятом участке поверхности.

1 Люкс – это когда 1 Люмен попадает на 1м2 освещаемой площади.

Допустим, у вас есть некая лампа со световым потоком в 1000 Лм. Внизу этой лампы стоит стол.

На поверхности этого стола должна быть определенная норма освещенности, чтобы вы могли комфортно работать. Первоисточником для норм освещенности служат требования сводов правил СП 52.13330

Для обычного рабочего места это 350 Люкс. Для места, где производятся точные мелкие работы – 500 Лк.

Данная освещенность будет зависеть от множества параметров. К примеру, от расстояния до источника света.

От посторонних предметов рядом. Если стол находится около белой стены, то и люксов соответственно будет больше, чем от темной. Отражение обязательно скажется на общем итоге.

Любую освещенность можно замерить. Если у вас нет специальных люксометров, воспользуйтесь программами в современных смартфонах.

Правда заранее приготовьтесь к погрешностям. Но для того, чтобы сделать навскидку первоначальный анализ, телефон вполне сгодится.

А как узнать примерный светопоток в люменах, вообще без измерительных приборов? Здесь можно воспользоваться значениями светоотдачи и их пропорциональной зависимости к потоку.

для светодиодных ламп с матовой колбой — мощность лампы умножьте примерно на 80лм/Вт и узнаете сколько в ней люмен

для филаментных – умножайте мощность лампы на 100

энергосберегайки КЛЛ – на 60лм/Вт

Безусловно, свет от разных источников распространяется не равномерно. Один светильник бьет очень узким пучком света, а другой наоборот максимально широким.

Но если сравнить их паспортные данные, оба они могут иметь одновременно одинаковое количество люмен.

Именно поэтому ориентироваться только на люмены, в корне не правильно.

Например, при покупке светильника через интернет, можно получить вовсе не то освещение, на которое изначально рассчитывали.

Еще раз запомните, световой поток показывает только КОЛИЧЕСТВО света, без учета направления его распространения.

Поэтому здесь еще нужно учитывать и другую характеристику – силу света. Что это такое?

Это величина светового потока разделенного на телесный угол, внутри которого он распространяется.

Проще говоря, если световой поток это количество света, то сила света – это его ”плотность”.

Измеряется сила света в канделах – Кд.

1 кандела – это 1 люмен распространяющийся в пределах конуса с углом в 65 градусов.

Чтобы визуально представить себе силу в 1 канделу, посмотрите опять же на обыкновенную свечу. Именно поэтому определение кандела произошло от латинского слова ”candela” – что в переводе означает свеча.

Кстати, теоретически человеческий глаз может увидеть свет от такого источника на расстоянии почти 50км!

Однако из-за кривизны поверхности земли, данное расстояние фактически сокращается до 5км.


С этим читают