Группы соединения трансформаторов

Подключение трансформатора тока к счетчику

Правильность соединения проверяется так. Этот трансформатор непригоден для контроля изоляции, заземление его первичной обмотки не допускается.

Изготовленный собственными руками трансформатор рекомендуется эксплуатировать, спрятав его за стенками металлического или деревянного корпуса, имеющего естественную вентиляцию. Одна из возможных схем, не является догмой.

Будут вопросы — спрашивайте.

Соединение трансформаторов тока и обмоток реле в неполную звездуСимметричная нагрузка при трехфазном КЗ. Нормально на концах дополнительной вторичной обмотки напряжение равно нулю, при замыкании же одной из фаз сети на землю напряжение повышается до 3 U ф оно будет равно геометрической сумме напряжений двух неповрежденных фаз. В эту обмотку включаются реле для сигнализации о замыканиях на землю и приборы.

Как подключить трансформаторы тока для электросчетчиков

Импортные трансформаторы проходят отечественный сертификационный контроль и не представляют опасности при эксплуатации. Подключение трансформатора тока Витками схема обозначает вторичную обмотку. Эта схема не имеет применения в нормальных силовых трансформаторах и применяется только там, где необходимо иметь соединение обмоток в треугольник и в то же время требуется иметь нулевую точку.

Все шире применяются трансформаторы напряжения с литой изоляцией. При трансформировании тока трехфазным броневым трансформатором обмотки пострадавшей фазы замыкают накоротко, предварительно отключив их от обмоток двух других фаз. Вместо а — 6 — с порядок чередования будет а — с — b рис. Подробно электрические карты приводятся корпусами, шильдиками приборов.

Схема соединений обмоток

В случае нарушения совмещенной токовой цепи электроэнергия не учитывается ни по одной из фаз. При коротком замыкании первичной обмотки сердечник войдет в насыщение, ток вторичной цепи не превысит 20 А. В цепь вторичной обмотки включается прибор измерения, контроля.

Собственно, поэтому прибор называется трансформатором тока. К трансформатору тока не относится.
Как прозвонить трансформатор или как определить обмотки трансформатора

Группы соединений обмоток

Для включения трансформатора на параллельную работу с другими трансформаторами имеет значение сдвиг фаз между э. д. с. первичной и вторичной обмоток. Для характеристики этого сдвига вводится понятие о группе соединений обмоток.

Рисунок 2. Группы соединений однофазного трансформатора

На рисунке 2, а показаны обмотки однофазного трансформатора, намотанные по левой винтовой линии и называемые поэтому «левыми», причем у обеих обмоток начала A, a находятся сверху, а концы X, x – снизу. Будем считать э. д. с. положительной, если она действует от конца обмотки к ее началу. Обмотки на рисунке 2, а сцепляются с одним и тем же потоком. Вследствие этого э. д. с. этих обмоток в каждый момент времени действуют в одинаковых направлениях – от концов к началам или наоборот, то есть они одновременно положительны или отрицательны. Поэтому э. д. с. EA и Ea совпадают по фазе, как показано на рисунке 2, а. Если же у одной из обмоток переменить начало и конец (рисунок 2, б), то направление ее э. д. с., действующей от конца к началу, изменится на обратное и э. д. с. EA и Ea будут иметь сдвиг 180°. Такой же результат получится, если на рисунке 2, а одну из обмоток выполнит «правой».

Для обозначения сдвига фаз обмоток трансформатора векторы их линейных э. д. с. уподобляют стрелкам часового циферблата, причем вектор обмотки ВН принимают за минутную стрелку и считают, что на циферблате часов она направлена на цифру 12, а вектор обмотки НН принимают за часовую стрелку. Тогда на рисунке 2, а часы будут показывать 0 или 12 часов, и такое соединение обмоток поэтому называется группой 0 (ранее в этом случае применялось название «группа 12»). На рисунке 2, б часы будут показывать 6 часов, и такое соединение называется группой 6. Соответственно соединение обмоток однофазных трансформаторов согласно рисунку 2, а обозначается I/I-0, а согласно рисунку 2, б – I/I-6. В России стандартизированы и изготовляются однофазные трансформаторы только соединением I/I-0.

Рисунок 3. Трехфазный трансформатор со схемой и группой соединений Y/Y-0

Рассмотрим теперь трехфазный трансформатор с соединением обмоток ВН и НН в звезду, причем предположим, что 1) обмотки ВН и НН имеют одинаковую намотку (например, «правую»); 2) начала и концы обмоток расположены одинаково (например, концы снизу, а начала сверху); и 3) одноименные обмотки (например, A и a, а также B и b, C и c) находятся на общих стержнях (рисунок 3, а). Тогда звезды фазных э. д. с. и треугольники линейных э. д. с. будут иметь вид, показанный на рисунке 3, б. При этом одноименные векторы линейных э. д. с. (например, EAB и Eab) направлены одинаково, то есть совпадают по фазе, и при расположении их на циферблате часов, согласно изложенному правилу, часы будут показывать 0 часов (рисунок 3, в). Поэтому схема и группа соединений такого трансформатора обозначается Y/Y-0.

Если на рисунке 3, а произвести круговую перемаркировку (или перестановку) фаз обмотки НН и разместить фазу a на среднем стержне, фазу b – на правом и c – на левом, то на векторной диаграмме НН (рисунок 3, б) произойдет круговая перестановка букв a, b, c по часовой стрелке. При этом получится группа соединений 4, а при обратной круговой перестановке будет группа соединений 8. Если переменить местами начала и концы обмоток, то получатся еще группы соединений 6, 10 и 2. Значит, при соединении по схеме Y/Y возможно шесть групп соединений, причем все они четные. Такие же группы соединений можно получить при схеме соединений Δ/Δ.

Рисунок 4. Трехфазный трансформатор со схемой и группой соединений Y/Δ-11

Допустим теперь, что обмотки соединены по схеме Y/Δ, как показано на рисунке 4, а, и соблюдены те же условия, которые были оговорены для рисунка 3, а. Тогда векторные диаграммы э. д. с. обмоток ВН и НН будут иметь вид, показанный на рисунке 4, б. При этом одноименные линейные э. д. с. (напрмер, EAB и Eab) будут сдвинуты на 30° и расположатся на циферблате часов, как показано на рисунке 4, в. Соединение обмоток такого трансформатора обозначаются Y/Δ-11. При круговых перестановках фаз и при перемаркировке начал и концов одной из обмоток (или при установке вместо перемычек ay, bz, cx  в треугольнике на рисунке 4, а перемычек az, bx, cy) можно получить также другие нечетные группы: 1, 3, 5, 7 и 9.

Большой разнобой в схемах и группах соединений изготовляемых трансформаторов нежелателен. Поэтому ГОСТ 11677-85,»Трансформаторы силовые. Общие технические условия», предусматривает изготовление трехфазных силовых трансформаторов со следующими группами соединений обмоток: Y/Y0-0, Y0/Y-0, Y/Δ-11, Y0/Δ-11, Y/Z0-11,  Δ/Y0-11, и Δ /Δ-0. При этом первым обозначено соединение обмотки ВН, вторым – соединение обмотки НН, а индекс «0» указывает на то, что наружу выводится нулевая точка обмотки.

Соединение в зигзаг – звезду трехфазного трансформатора

Первичные обмотки трансформаторов соединены в звезду, вторичные в зигзаг – звезду (рисунок 2, а). Для этого вторичная обмотка каждой фазы составляется из двух половин: одна половина расположена на одном стержне, другая – на другом. Конец, например x1, соединен с концом (а не с началом!) y2 и так далее. Начала a2, b2 и c2 соединены и образуют нейтраль. К началам a1, b1, c1 присоединяют линейные провода вторичной сети. При таком соединении электродвижущие силы (э. д. с.) обмоток, расположенных на разных стержнях, сдвинуты на 120°; векторная диаграмма э. д. с. вторичной обмотки приведена на рисунке 2, б.

Эта векторная диаграмма построена следующим способом. Предположим, что соединены концы x1, y1, c1 и получена диаграмма (рисунок 2, в). Затем предположено, что соединены начала a2, b2, c2. Это соответствует диаграмме на рисунке 2, г, повернутой относительно диаграммы на рисунке 2, в на 180°. Наконец, в соответствии со схемой на рисунке 2, а произведено геометрическое сложение векторов, которые изображены на рисунках 1, в и г.

Рисунок 2. Соединение в зигзаг – звезду трехфазного трансформатора.Буквами   a1, b1, c1, a2, b2, c2   обозначены   начала   вторичных   обмоток, буквами x1, y1, z1, x2, y2, z2 – их  концы Электродвижущие  силы вторичных  обмоток: e’1, e’2, e’3, e’’1, e’’2, e’’3, линейные напряжения E1, E2, E3

Соединение в зигзаг – звезду дороже соединения в звезду, так как требует большего числа витков. Действительно, при последовательном соединении двух половин обмотки, расположенной на одном стержне, их э. д. с. складываются алгебраически, то есть в данном случае удваиваются. При соединении обмоток, расположенных на разных стержнях, э. д. с. складываются геометрически под углом 120° и дают э. д. с, √3 раз больше одной из них. Следовательно, чтобы получить э. д. с. той же величины при соединении в зигзаг – звезду, нужно на 15% больше витков, чем при соединении в звезду, так как 2 / 1,73 = 1,15.

При соединении в зигзаг – звезду можно получить три напряжения, например 400, 230 и 133 В. Указанные величины относятся к холостому ходу. Под нагрузкой у потребителей напряжения будут ниже, приближаясь к номинальным напряжениям сети 380, 220 и 127 В.

Соединение обмоток трансформатора в треугольник

Соединение в треугольник так называется из-за внешнего сходства с треугольником (видно на рисунке).

При соединении в треугольник действуют следующие соотношения –

  • линейные токи больше фазных в √3 раз
  • линейные напряжения равны фазным

Три вторичные обмотки, при соединении в треугольник соединены последовательно, образуя тем самым замкнутую цепь. В этой цепи отсутствует ток, так-как ЭДС фаз сдвинуты на 120 градусов и их сумма в каждый момент времени равна нулю. Так же ток равен нулю при соблюдении тотчасно следующих условий – ЭДС имеют синусоидальную форму, обмотки имеют одинаковые числа витков.

Звезда и треугольник в вопросе о третьих гармониках трансформаторов

В трансформаторах схему треугольник используют кроме прочего для получения токов третьих гармоник, которые необходимы для создания синусоидальной ЭДС вторичных обмоток. Другими словами, для исключения третьей гармонической составляющей в магнитном потоке.

Чтобы ввести третьи гармоники при соединении в звезду — соединяют нейтраль звезды с нейтралью генератора, по этому пути и начинают пробегать третьи гармоники.

Разновидности

Однофазный

Однофазные трехобмоточные трансформаторы для силовых линий обычно изготавливают мощностью 5000–40000 кВт с напряжением обмоток:

  • ВН – с значениями 110–121 кВ;
  • CН – от 34,5 до 38,5 кВ;
  • НН – в диапазоне 3,15–15,7 кВ.

Типовой однофазный 3-х обмоточный преобразователь, например, классов напряжения 15, 20, 24 и 35 кВ предназначен для встраивания в пофазно-экранированные токопроводы сетей 50/60Гц. Конструкция изделия включает следующие составные части и комплектующие:

  • бак с крышкой из немагнитной стали, задвижкой и пробкой, заполненный трансформаторным маслом;
  • магнитопровод из электротехнической стали;
  • активную часть, состоящую из обмоток, изоляции и крепежных элементов;
  • плоского контакта на крышке бака первичного вводного напряжения;
  • заземляющего ввода первичной обмотки и вводов вторичной обмотки на боковой стенке бака.

Электрические аппараты большой мощности (≤40000 кВа), рассчитанные на работу в интервале 110–121 кВ дополнительно могут оснащаться:

  • выхлопной трубой для защиты бака от разрыва парами масла и газовым реле, отключающим подачу электропитания при внутривитковом замыкании в трансформаторе;
  • расширителя с воздухоосушителем и термосифонным фильтром для поддержания требуемого уровня масла и предотвращения попадания влаги из атмосферы;
  • системами естественной/принудительной циркуляции воздуха или масла.

Экономическая эффективность применения изделия состоит в том, что при 3-х обмоточном исполнении первичный ток равен не арифметической, а геометрической сумме приведенных вторичных токов. Трехобмоточные (многообмоточные) аппараты целесообразно применять вместо двухобмоточных в том случае, если нагрузки ЛЭП/обслуживаемых электрических сетей соизмеримы, то есть отличаются друг от друга не более чем в 5 раз.

Трехфазный

В трехфазных преобразователях переменного напряжения на каждую трансформируемую фазу приходится 3 обмотки. В  таком трансформаторе с общим магнитопроводом обмоток рабочие процессы протекают для каждой фазы аналогично, только со сдвигом во времени. На первичные обмотки поступает переменное фазное напряжение, вторичные обмотки соединены с нагрузкой. Поэтому для описания работы электрического аппарата исследуется только одна рабочая фаза.

Трехфазные 3-х обмоточные преобразователи для силовых линий обычно изготавливают мощностью 5600–31500 кВт и напряжениями катушек  аналогичным тем, которые используются в однофазных аппаратах. Трансформаторы получили наибольшее распространение на электрических подстанциях. По сравнению с группой однофазных трансформаторов при той же мощности они позволяют экономить 12–15% электроэнергии и 20–25% активных материалов в стоимостном выражении. Это конкурентное преимущество изделий подобного типа учитывается при изготовлении аппаратов массовых серий.

Что такое трансформатор? Классификация и устройство.

Трансформатором называется статический электромагнитный аппарат, предназначенный для преобразования  электрической энер­гии переменного тока одного напряжения в электрическую энергию другого напряжения при неизменной частоте.

Во второй части статьи читайте про рабочие характеристики, потери и другую детальную информацию.

Трансформатор, как правило, состоит из стального замкнутого магнитопровода (сердечника) и двух или нескольких изолированных друг от друга обмоток, размещенных на сердечнике и электрически между собой не связанных (исключение составляют автотрансформа­торы), клеммного щитка  и корпуса (бака). Силовые трансформаторы мощностью свыше 20 кВ·А могут иметь масляное охлаждение, при котором сердечник с обмотками располагается в масляном баке.

Рис. 1 — Устройство трансформатора

По типу магнитопровода различают стержневые (рис. 1, а) и броневые (рис. 1, б) трансформаторы. Часть сердечника, которая соединяет между собой стержни и служит для замыкания магнитной цепи, называют ярмом. Пространство, ограниченное замкнутым сердечником и служащее для размещения обмотки, называют окном. Сердечник набирается (шихтуется) из изолированных листов специальной трансформаторной (электротехнической) стали толщиной 0,35 или 0,5 мм с малыми удельными потерями на гистерезис. Шихтовка сердечника позволяет в значительной степени уменьшить потери от вихревых токов.

По числу фаз трансформаторы делятся на однофазные, трехфазные и многофазные. В свою очередь однофазные трансформаторы могут быть двух- или многообмоточными.

Обмотки судового трансформатора изготовляются из медного провода круглого или прямоугольного поперечного сечения. По способу расположения на стержнях различают концентрические (рис. 1, а) и чередующиеся обмотки (рис. 1, б).

Обмотки, к которым энергия подводится от сети, называются первичными, другие, к которым подключаются потребители, называются вторичными. Аналогично все величины (число витков, напряжение, ток, мощность и др.), относящиеся к соответствующим обмоткам, называют первичными или вторичными и обозначают символами с цифрами (соответственно W1, U1,  I1, P1 или W2, U2,  I2, P2 и др.)

Если вторичное напряжение меньше первичного, то трансформатор называется понижающим, если больше — повышающим. При концентрической форме обмоток ближе к стержню располагают обмотки низкого напряжения (НН), затем — обмотки высокого напряжения (ВН) (рис. 1, а). По назначению трансформаторы разделяют на силовые и на специальные — сварочные, измерительные и т.п.

Все судовые трансформаторы имеют воздушное охлаждение и по исполнению делятся на водозащищенные (мощностью от 0,25 до 4,0 кВ·А при частоте 50 Гц и мощностью от 0,25 до 10 кВ·А при частоте 400 Гц), брызгозащищенные (от 6,3 до 100 кВ·А при 50 Гц и от 16 до 100 кВ·А при 400 Гц) и открытые (без защитного бака). К последним относятся однофазные трансформаторы мощностью 0,26, 0,63 и 1,0 кВ·А.

Защитный бак выполняют сварным из листовой стали. У трансформаторов водозащищенного исполнения он имеет цилиндрическую форму, у брызгозащищенного — прямоугольную. В баке предусмотрены сальники ввода кабелей и лапы для крепления трансформатора. На корпусе бака прикреплен заводской щиток, на котором приведены следующие данные:

— завод-изготовитель, год выпуска и заводской номер трансформатора;
— тип трансформатора;
— номинальная мощность, в киловольт-амперах, число фаз, номинальное напряжение обмоток при холостом ходе, частота тока;
— схема и группа соединения обмоток трансформатора, которые необходимы для правильного включения трансформаторов на параллельную работу;
— напряжение короткого замыкания Uк% (в процентах от номинального напряжения), КПД при номинальной нагрузке, полная масса, исполнение корпуса, номинальные токи обмоток;
— расположение контактных зажимов, их обозначение и прин­ципиальная схема соединения обмоток.

Про принцип действия генератора постоянного тока читайте в нашей статье.

Принцип работы

На обмотку возбуждения подаём переменное напряжение U1, так как обмотка возбуждения обладает сопротивлением, создаётся электрический ток. Ток, проходя по виткам, наводит магнитодвижущую силу, а магнитодвижущая сила наводит магнитный поток. Магнитный поток идет по сердечнику, проходя все витки первичной и вторичной обмоток. В этом случае магнитный поток (Фт) является основным, т. е. рабочим. Вторая (меньшая) часть потока замыкается при помощи воздуха, проходя только через витки первичной обмотки, и является потоком рассеивания Фs1.

Если вторичная цепь (питаемая от вторичной (II) обмотки) разомкнута, то, естественно, ток отсутствует, нет возможности образования магнитного поля. Но вот мы замкнули (II) цепь, по ней пошёл ток. Значит, образуется магнитное поле, которое, в свою очередь, создаёт два магнитных потока:

  • 1 поток — в сердечник;
  • 2 поток — замыкается по воздуху.

Это означает, что вокруг (II) обмотки тоже наводится поток рассеивания. Потоки рассеивания подобны магнитному потоку самоиндукции, создающему ток в той или иной катушке индуктивности и различном проводе. Потоки являются вредными. В применении правила электромагнитной индукции при изменении главного магнитного потока наводится ЭДСв (I) Е1 и во (II) Е2 обмотках.

Так как по (I) спирали с числом витков w1 и по (II) спирали с числом витков w2 проходит один и тот же основной поток, то, следовательно, в каждом витке обеих спиралей наводится равная по значению ЭДСе. Таким образом, Es1 = ew1 и Еs2 = ew2, из этого следует, что К — коэффициент изменения трансформатора.

Поток рассеивания наводит электродвижущая сила рассеивания в первичной обмотке Es 1. Значит, напряжение, подведённое к (I) обмотке трансформатора U1, должно соответствовать падению напряжения в действующем сопротивлении I1 r1 (I) обмотки,электродвижущая сила Esl рассеивания и ЭДС E1 главного потока.

При разъединенной (II) цепи, Es 1 и I1 r1 ничтожно малы, значит, электродвижущая сила Е1, наведённая в (I) обмотке, в полном объёме оправдывает приложенное напряжение U1. При размыкании (II) цепи ЭДС Е2 электрический ток перестаёт поступать, но если замкнуть (II) обмотку,подключив электроприемники, то под воздействием (II) ЭДС по (II) цепи пойдёт ток, подходящая к трансформатору (I) мощность изменяется во (II) и применяется для приёмников электроэнергии.

Если не брать во внимание потери, можно принять, что подходящая мощность E1 I1 почти равна (II) мощности Е2 I2 (I1 и I2 — (I) и (II) токи трансформатора). То есть при изменении (I) и (II) токи примерно обратно пропорциональны числам соответствующих обмоток

(II) ток I2, протекая по спирали, создаёт ампер-спираль I2 w2 , проходящие в той же цепи трансформатора, что и ампер-витки (I) спирали. Значит, при нагрузке главный электромагнитный поток будет ориентироваться на совместное действие ампер-витков l1 w1 (I) и ампер-витков I2 w2 (II) обмоток.

По закону Джоуля-Ленца электроиндукционный во второстепенной обмотке ток сосредоточен так, что тормозит изменение электромагнитного потокосцепления. Перемена электромагнитного потока провоцируется первичными ампер-витками l1 w1. Необходимо протекание II тока в таком направлении, чтобы образовавшиеся ампер — спирали работали в противоположную сторону от I обмотки. Падение главного магнитного потока из-за потери магнитного действия II ампер — спиралей спровоцирует упадок индукционной и электродвижущей силы в I обмотке.

В случае когда напряжение, поступающее к клемам I обмотки, постоянное, при падении оно не выравнивает напряжение, из-за этого ток возрастает до параметров, при которых возобновляется равенство напряжений. При этом главный магнитный поток обязан сохранять параметры, равные величине главного потока при свободном ходе. При любых нагрузках преобразователя напряжение U1 должно соответствовать электродвижущей силе Е1 (понижение напряжения в I обмотке игнорируем).

Необходимо, чтобы главный электромагнитный поток Фт оставался постоянным при различной нагрузке трансформатора. Ток I1 в (I) обмотке должен компенсировать воздействие ампер-витков, возникающих при токе I2 во (II) обмотке. Напряжение на клеммах (I) обмотки всегда менее ЭДС Е2 в результате уменьшения напряжения в активном и реактивном противодействиях вторичной обмотки.

Общее описание и назначение

Если взять двухобмоточный трансформатор и на стержень намотать проводом витки дополнительной катушки индуктивности, наводимое в ней напряжение будет пропорционально числу витков. В зависимости от исполнения вторичные катушки могут быть одинаковой или разной мощности.

Cхема 3-х обмоточного трансформатора

Существуют 2 вида трансформаторов подобного типа:

  • с 1-й первичной и 2-мя вторичными обмотками – самый распространенный вид;
  • с 2-мя первичными и 1-ой вторичной обмоткой – этот вид задействован в трансформаторных группах электростанций.

Условное обозначение 3-х обмоточного трансформатора

Номинальной мощностью 3-х обмоточного аппарата считается параметр самой мощной его катушки, которой в данном типе электрических устройств является обмотка ВН. Размещение силового 3-х обмоточного устройства с невысокой мощностью любой из обмоток в электрических цепях экономически не оправдано. Поэтому мощности вторичных катушек ВН, СН и НН аппарата в процентах от Pном обычно составляют:

  • 100;100;100%;
  • 100;100;66,7%;
  • 100;66,7;100%;
  • 100;66,7;66,7%.
Оцените статью
stroycollege12.ru
Добавить комментарий

Adblock
detector