Как устроен трехфазный выпрямитель

Содержание

Классификация по назначению и устройству

Выпрямители переменного тока разделяют на несколько различных видов, в зависимости от характеристик, использования периодов переменного тока, схем, по количеству фаз и типу пропускающего элемента. В общем виде классификация имеет следующий вид:


  • По количеству периодов, задействованных в работе (одно,- и двухполупериодные, а также с полным и неполным использованием волны);
  • По типажу устройства делят на включающие электронный мост, умножающие напряжение, с наличием или отсутствием трансформаторов;
  • По количеству фаз разделяют на однофазные, двух, трех,- и N-фазные;
  • Согласно типу устройства, пропускающего синусоиду, делят на полупроводниковые диодные и тиристорные, механические и вакуумные, ртутные;
  • По виду пропускаемой волны делят на импульсные, аналоговые и цифровые.

Однополупериодный выпрямитель (четвертьмост)

Представляет собой простейшее устройство, преобразовывающее сигнал из переменного электрического тока в постоянный. Таким образом происходит сглаживание уровня сигнала. Схема построена на одном полупроводниковом вентиле (диоде). Редко применяется в промышленности, так как для питания автоматики и аппаратуры требуется добавление в цепь питания фильтров, которые бы сглаживали полуволну. Поэтому размеры и масса устройств на базе данного выпрямителя выходят слишком значительными. Не подходит к электрическому току с промышленной частотой сигнала в 50-60 Герц.

Такая схема выпрямителя используется в импульсных БП. Требуется для компьютерной техники и с высокой частотой сигнала – около 10 Герц. Также применяется в промышленности для выпрямления высокочастотного тока.

Устройство отличается следующими достоинствами:

  • Высокая частота пульсация;
  • Повышенная нагрузка на выпрямляющее устройство;
  • Ухудшение работы трансформатора вследствие намагничивания;
  • Невысокий показатель соотношения габаритов к мощности.

Достоинство – дешевизна.

Два четвертьмоста параллельно

Данная схема состоит из двух четвертьмостов с одним периодом, которые работают независимо один от одного, на одну мощность. Принцип работы заключается в распараллеливании полуволны на 2 части. При первом временном промежутке происходит на одну половину, затем через часть схемы.

Два полных моста последовательно

Это двухфазная схема, которая включает два последовательных диодных моста. При этом электродвижущая сила равняется удвоенной относительно полного моста с одной фазой. Относительно сопротивление увеличивается в 4 раза.

Двухполупериодный выпрямитель, мостовая схема

В таком устройстве диодные мосты подключается ко вторичной обмотке трансформирующего прибора. Полупроводниковые элементы работают попарно, каждый со своей очередностью, пропуская только положительную или отрицательную полуволну. Таким образом частота колебания мощности, которая была выпрямлена, вдвое выше частоты тока в сети.

Три полных моста параллельно (12 диодов)

Это менее распространенная схема, состоящая из 12 параллельно соединенных диодов. По большинству характеристик значительно превосходит другие выпрямители напряжения. При прохождении электрического тока через всю схему исходящее напряжение выходит без пульсаций.

Три полных моста последовательно

Последовательная схема с двенадцатью диодами представляет собой трехфазный выпрямитель тока. Сопротивление в ней эквивалентно трем диодным мостам, в каждом из которых уровень сопротивления равен 3R. Таким образом, общий уровень препятствия движению заряженных частиц приблизительно равен 9R. В то время как частота колебаний в 6 раз выше, чем такая же от поступающего сигнала. Достоинством такого выпрямителя является наибольшая средняя электродвижущая сила, поэтому он часто используется в источниках мощности с большим выходным напряжением.

Трехфазная схема выпрямления

Устройства с тремя входящими фазами являются достаточно распространенными. Они обрезают часть волны, за счет чего значительно снижают колебания. Наиболее популярна трехдиодная схема Миткевича и шестидиодная схема Ларионова.

Активный выпрямитель — описание работы схемы

Схема выделяет модуль входного напряжения и тем самым работает как двухполупериодный выпрямитель. Она состоит из диодного ограничителя, реализованного на ОУ1 и двухвходового суммирующего усилителя на ОУ2.

Когда входное напряжение Uвх имеет отрицательную полярность, верхний диод находится в непроводящем состоянии. Последовательно включенные сопротивления R и R/2 не работают, поскольку они включены между потенциально заземленными входами усилителей ОУ1 и ОУ2 . Выходной суммирующий усилитель действует как инвертор с единичным усилением, и:

Uвых = − Uвх при Uвх < 0

Входное напряжение положительной полярности Uвх преобразуется ограничителем в напряжение отрицательной полярности U=−Uвх , и затем оба напряжения складываются так, что на выходе суммирующего усилителя появляется напряжение:

Uвых = − Uвх − 2U = + Uвх при Uвх > 0

Оба случая можно формально объединить, записав как:

Uвых = |Uвх|

Поэтому такой выпрямитель и называется также схемой выделения модуля переменного сигнала

Графически зависимость выпрямленного выходного напряжения от переменного входного можно изобразить в следующем виде:


Данная схема очень пригодилась, когда появилась необходимость выпрямлять переменное напряжение частотой 150кГц с последующей отправкой на АЦП микроконтроллера для передачи на ПК. Выпрямитель стал частью установки по изучению релаксационных свойств МДП структур 🙂

Выбор дета

Характеристики данной схемы определяются применяемыми деталями.

В качестве ОУ была выбрана микросхема LM833, позволяющая работать на частотах вплоть до 15МГц. Такой запас по частотной полосе может показаться даже излишним, однако он гарантирует минимум фазовых искажений до нескольких МГц. Использовалось напряжение питания ±15В, которое было стабилизированно посредством L7815 и L7915.

В качестве диодов использовались быстродействующие Диоды Шоттки (4148).

Величина R была выбрана 14.51 кОм, ввиду наличия данного номинала, однако никто не мешает выбрать ее равной как 10кОм так и 20-30кОм.

Для исключения внесения дополнительной ошибки использовались прецизионные резисторы типа (С2-13). Данные резисторы имеют стеклянную изоляцию покрытую дополнительным слоем керамики, что обеспечивает значительную температурную стабильность при измерениях. Ошибка номиналов резисторов +-0.5%.

Модели с умножением напряжения

Выпрямители данного типа на сегодняшний день активно используются в преобразователях. Стандартная схема модификации включает в себя вентиль, а также транзисторы. В среднем показатель их емкости равняется 2 пФ. Непосредственно проводимость тока составляет не более 3 мк.

Если говорить про модификации на два канала, то у них используются расширители. Устанавливаются они как открытого, так и закрытого типа. Во многих моделях есть регуляторы. Если говорить про выпрямители на четыре канала, то они производятся с модуляторами. Для их работы используются различные триггеры. Чаще всего они встречаются трехразрядного типа.

Внутреннее описание

Диод, как и все полупроводники, в основном состоит из чистого кремния (более популярного в настоящее время, чем германий). По своей природе кремний является плохим проводником электричества, поэтому, смешивая в нем определенные примеси (легирование), в некоторой степени достигается проводимость. Эти примеси могут быть положительными носителями или отрицательными носителями заряда, известными как p-тип и n-тип соответственно.

В диоде кремний p-типа и кремний n- типа сплавляются вместе, образуя соединение, называемое pn-переходом. При подключении к источнику напряжения этот переход ограничит поток тока от n- типа к p-типу и позволит протекать току от p-типа к кремнию n- типа, только если напряжение превышает 0,6 вольт. Это минимальное напряжение требуется в любом кремниевом полупроводнике для инициирования проводимости электронов и известно как прямое напряжение. Вывод p-типа диода называется анодом, а вывод n- типа называется катодом и обозначается кольцом или полосой на его корпусе.

Трехфазная мостовая схема выпрямления

(схема Ларионова)

Рисунок 1 – Трехфазная мостовая схема выпрямителя

Трехфазная мостовая схема в настоящее время нашла наиболее широкое применение. Это связано с тем, что она имеет лучшие технико-экономические показатели по сравнению с другими схемами.

Хорошее качество выпрямленного напряжения такое же, как и в шестифазной схеме выпрямления со средней точкой, достигается применением шести вентилей, но выпрямитель при этом работает с одной трехфазной обмоткой. То есть, при необходимости можно работать без трансформатора, непосредственно от трехфазной сети переменного тока. Мостовая схема может быть представлена двумя трехфазными схемами со средним выводом включенными последовательно. Первый выпрямитель (1) собран на тиристорах VS1, VS3, VS5 – которые объединены в катодную группу. Второй выпрямитель (2) – VS2, VS4, VS6  они объединены в анодную группу.

При последовательном включении выпрямителей выпрямленное напряжение удваивается :

Ud0=Ud0I+Ud0II ,

кроме этого, при последовательном включении исключаются уравнительные токи – ненужен уравнительный реактор.

Что такое диоды

Схема диодной сборки Из приведенного выше рисунка видно, что в мостовую схему входят четыре полупроводниковых элемента диода , порядок соединения которых соответствует встречно-параллельному принципу. Любое преобразование напряжения требует применения диодных мостов.

Избыток заряда одного знака заставляет носителей отталкиваться друг от друга, в то время как область с противоположным зарядом стремится притянуть их к себе. В электронике данная схема применяется в настоящее время повсеместно.

Более мощные выпрямительные диодные мосты требуют охлаждения, так как при работе они сильно нагреваются. Во время положительного полупериода положительное напряжение приложено к аноду VD1, а отрицательное — к катоду VD3. В обычной осветительной цепи течет переменный ток, который 50 раз в течение одной секунды меняет свою величину и направление.

Схема диодного моста Это так называемый однофазный выпрямительный мост, один из нескольких типов выпрямителей , которые активно применяются в электронике. Его превращение в постоянный — достаточно часто встречающаяся необходимость. В области соединения материала n- и p-типа существует потенциальный барьер.

Физические свойства p-n перехода

Также в нем будет рассмотрен вопрос, касающийся того, как сделать диодный мост своими руками. Образованный избыток электронов формирует отрицательный заряд, а дырок — положительный. Но самое интересное, что два типа проводимости могут существовать в одном куске полупроводника. Пару слов о том, как работает диодный мост.

Схема и принцип работы диодного моста На данной схеме 4 диода соединенных по мостовой схеме подключены к источнику переменного напряжения В. Диод Раньше, в эпоху стеклянных электронных вакуумных ламп, это была самая простая из ламп.

Если взглянуть на принципиальные схемы блоков питания, как трансформаторных, так и импульсных, то после выпрямителя всегда стоит электролитический конденсатор, который сглаживает пульсации тока

Важно отметить, что ток Iн протекающий через нагрузку Rн, не изменяется по направлению, то есть является постоянным

Выпрямлению подвергается напряжение, снимаемое со вторичной понижающей обмотки трансформатора Т. При загорании включенного через ограничивающий резистор светодиода можно быть уверенным в том, что на выходе появился постоянный потенциал. В данной схеме, ток протекает от фазы с наибольшим потенциалом, через нагрузку к фазе с наименьшем потенциалом. Потому что анод холодный, а к катоду теперь приложен положительный потенциал, который возвращает выброшенные накалом катода электроны обратно. Однако отдельные образцы современных электронных устройств ваш мобильный, например нуждаются в постоянном или выпрямленном напряжении. Способы соединения диодных мостов, выпрямителей для увеличения их максимального тока и напряжения

Преобразовать переменный ток в постоянный поможет диодный мост – схема и принцип действия этого устройства приводятся ниже. В обычной осветительной цепи течет переменный ток, который 50 раз в течение одной секунды меняет свою величину и направление. Его превращение в постоянный – достаточно часто встречающаяся необходимость.

Характеристики диодного моста

Как мы уже с вами разобрали, в электронике встречаются диодные мосты в разных корпусах и имеют разные габариты.

Почему так? Дело в том, что каждый диодный мост обладает какими-то своими характеристиками, о которых мы и поговорим в этой главе.


Чтобы далеко не ходить, давайте рассмотрим диодный мост GBU6K и рассмотрим на его примере, как читать характеристики.

Для того, чтобы понять, что это за фрукт и с чем его едят, надо скачать на него техническое описание (даташит). Вот ссылка на этот диодный мост. Ниже рассмотрим основные характеристики диодного моста, которых будет достаточно для рядового электронщика.

Распиновка и корпус

Итак, на главной странице мы видим распиновку выводов. Распиновка – это какие выводы за что отвечают и как правильно их соединять с внешней цепью.

Как вы видите, на средний выводы подаем переменное напряжение, а с крайних выводов снимаем постоянное напряжение. Также на рисунке показано, как соединяются диоды в этом диодном мосте. Нам эта информация еще очень пригодится.

Чуть ниже мы видим вот такую табличку, которая показывает нам самые главные первичные характеристики.

Package – тип корпуса. Корпуса GBU выглядят вот так.

Максимальный ток

Итак, с этим разобрались. Далее следующий параметр. IF(AV) – максимальный ток, который может “протащить” через себя этот диодный мост. В даташите есть таблички и графики, какие условия должны соблюдаться, чтобы мост смог протащить через себя этот ток без вреда для своего здоровья.

Поэтому, диодные мосты в больших металлических корпусах способны “протащить” через себя очень большую силу тока. Если же маленький диодный мост вставить в какой-нибудь мощный блок питания, то скорее всего он просто-напросто сгорит.

В промышленности в силовой электронике стараются использовать диодные моста большой мощности, например, вот такой диодный мост может “протащить” через себя силу тока в 50 Ампер.

Максимальное пиковое обратное напряжение

Грубо говоря, это обратное напряжение диода. Если его превысить, то произойдет пробой и диоду, а следовательно и диодному мосту, придет “кирдык”

Этому параметру также следует уделять внимание, когда вы будете выпрямлять сетевое напряжение. Если вы будете подавать на диодный мост 220 Вольт, то его пиковое значение будет составлять 310 Вольт (220 × √2)

Так как у меня диодный мост GBU6K, то надо смотреть табличку ниже. Как вы видите, пиковое обратное напряжение диодов составляет 800 Вольт. Значит, такой диодный мост вполне подойдет для выпрямления сетевого напряжения.

Силовые устройства

Выпрямители тока данного типа используются в различных блоках питания. Наиболее часто их можно встретить в персональных компьютерах. Схема устройства предполагает использование векторного транзистора. Если рассматривать двухканальную модификацию, то подключение осуществляется через расширитель.

В некоторых устройствах используются тетроды. Если рассматривать трехканальные элементы, то они рассчитаны для блоков питания на 20 В. В данном случае тетроды никогда не применяются. Принцип работы выпрямителей построен на изменении частоты. Многие модификации продаются с электронными вентилями. Если говорить про параметры, то чувствительность устройства колеблется в районе 23 мВ. Непосредственно проводимость тока у моделей не превышает 2 мк.

Трехфазный мостовой выпрямитель – принцип работы и схемы

Если для маломощных схем постоянного тока применяют однотактные или мостовые однофазные выпрямители, то для питания более мощных нагрузок необходимы порой выпрямители трехфазные.

Трехфазные выпрямители позволяют получать большие величины постоянных токов с малыми уровнями пульсаций выходного напряжения, что сказывается на снижении требований к характеристикам сглаживающего выходного фильтра. Итак, для начала рассмотрим однотактный трехфазный выпрямитель, изображенный на рисунке ниже:

В приведенной на рисунке однотактной схеме к выводам вторичных обмоток трехфазного трансформатора подключены всего три выпрямительных диода. Нагрузка присоединена к цепи между общей точкой, в которой сходятся катоды диодов, и общим выводом трех вторичных обмоток трансформатора.

Давайте теперь рассмотрим временные диаграммы токов и напряжений, имеющих место во вторичных обмотках трансформатора и на одном из диодов трехфазного однотактного выпрямителя:

Некоторым устройствам постоянного тока требуется большее напряжение питания, чем может дать однотактная схема, приведенная выше. Поэтому в некоторых случаях больше подходит схема трехфазного двухтактного выпрямителя. Принципиальная его схема приведена на рисунке ниже. Как мы уже отмечали, требования к фильтру снижаются, вы сможете увидеть это по диаграммам. Данная схема известна как трехфазный мостовой выпрямитель Ларионова:

Взгляните теперь на диаграммы и сравните их с однотактной схемой. Выходное напряжение в мостовой схеме легко представляется в виде суммы напряжений как бы двух однотактных выпрямителей, работающих в противоположных фазах. Напряжение Ud = Ud1+Ud2. Количество фаз на выходе очевидно больше и частота пульсаций сети больше.

В данном конкретном случае – шесть фаз постоянного напряжения вместо трех, которые были в однотактной схеме. Вот почему требования к сглаживающему фильтру снижаются, и в некоторых случаях без него можно полностью обойтись.

Три фазы обмоток вкупе с двумя полупериодами выпрямления дают основную частоту пульсаций равную шестикратной частоте сети (6*50 = 300). Это видно по диаграммам напряжений и токов.

Мостовое включение можно рассмотреть как объединение двух однотактных трехфазных схем с нулевой точкой, причем диоды 1, 3 и 5 — это катодная группа диодов, а диоды 2, 4 и 6 — анодная группа. Два трансформатора будто бы объединены в один. В каждый момент прохождения тока через диоды – в процессе участвуют одновременно два диода — по одному из каждой группы.

Открывается катодный диод, к которому приложен более высокий потенциал относительно анодов противоположной группы диодов, и в анодной группе открывается именно тот из диодов, потенциал к которому приложен более низкий по отношению к катодам диодов катодной группы.


Переход рабочих промежутков времени между диодами происходит в моменты естественной коммутации, диоды работают по порядку. В итоге потенциал общих катодов и общих анодов может быть измерен по верхней и нижней огибающим графиков фазных напряжений (см. диаграммы).

Мгновенные значения выпрямленных напряжений равны разности потенциалов катодной и анодной групп диодов, то есть сумме ординат на диаграмме между огибающими. Выпрямленный ток вторичных обмоток показан на диаграмме для активной нагрузки.

Таким же образом можно получить от трехфазного трансформатора более шести фаз постоянного напряжения: девять, двенадцать, восемнадцать и даже больше. Чем больше фаз (чем больше пар диодов) в выпрямителе, тем меньше уровень выходных пульсаций напряжения. Вот, взгляните на схему с 12 диодами:

Здесь трехфазный трансформатор содержит две трехфазные вторичные обмотки, причем одна из групп объединена в схему «треугольник», вторая — в «звезду». Количества витков в обмотках групп отличаются в 1,73 раза, что позволяет получить со «звезды» и с «треугольника» одинаковые величины напряжения.

В данном случае сдвиг фаз напряжений в этих двух группах вторичных обмоток относительно друг друга получается равен 30°. Поскольку выпрямители включены последовательно, то выходное напряжение суммируется, и на нагрузке частота пульсаций оказывается теперь в 12 раз большей по отношению к сетевой частоте, при этом уровень пульсаций получается меньшим.

Расчёт мощности

Перед тем, как приобрести стабилизатор напряжения, очень важно сделать расчет мощности всего, чему необходима электроэнергия. То есть, требуется подсчитать сумму всех электрических приборов дома

Рекомендуется также учесть тот факт, что некоторые виды электродвигателей по мощности намного больше, чем установлено. Тогда, в свою очередь, выпрямитель напряжения должен быть намного мощнее всех двигателей и компрессоров в пять раз.

Чтобы правильно рассчитать мощность, нужно не только сложить все бытовые приборы, но учитывать впускаемый ток. Чтобы узнать мощность электрическийх приборов, рекомендуется посмотреть этикетку или технический паспорт. Еще одним моментов является тип нагрузки, который также следует учесть при расчетах.

Она бывает 2 типов:

  1. Активная нагрузка – это преобразование приборами различных типов энергии. Таких как световая или тепловая. Большинство электрических приборов имеют только активную нагрузку. Они потребляют приблизительно один квт электроэнергии.
  2. Реактивная нагрузка – к ней относятся разнообразные двигатели. Эти бытовые приборы имеют как полную мощность, так активную. Она имеет условное обозначение. Если требуется вычислить мощность такого электроприбора, нужно активную мощность разделить на указанное условное обозначение.

Также, в расчетах учитываются пусковые токи, то есть потребление электроэнергии при запуске прибора. Такие токи есть наличием у приборов с электродвигателем. Если поставили трансформатор, то нужно мощность таких приборов умножать на пять. В противном случае, трансформатор не предоставит возможность включить прибор.

Трехфазный прибор (схема Ларионова)

Трехфазный мостовой выпрямитель (рис. 2.2, а) можно рассматривать как со­единение двух трехфазных выпрямителей с нулевым выводом, у одного из которых диоды VD1, VD3, VD5 образуют катодную группу, а у другого диоды VD2, VD4, VD6 обра­зуют анодную группу. Трансформаторы у этих выпрямителей совмещены в один. При работе мостовой схемы ток проводят всегда два диода; один в анодной, а другой – в ка­тодной группе.

В любой момент времени в катодной группе будет открыт тот диод, по­тенциал которого по отношению к средней точке трансформатора выше (более поло­жительный) потенциала анода других диодов. В анодной группе проводит тот диод, по­тенциал, которого ниже (более отрицателен) по отношению к потенциалам катодов других диодов.

Например, в момент времени θ = θ1 (рис. 2.2, б) в катодной группе про­водит диод VD1, в анодной – VD6. Переход тока с диода на диод в обоих группах происходит в точках естественной коммутации К1, К2, К3,…, А1, А2, А3 и т.д. Порядок вступления диодов в работу соответствует их номерам.

Таким образом, по отношению к нулевой точке трансформатора потенциал общих катодов из­меряется по верхней огибающей, а потенциал общих анодов – по нижней огибающей кривых фазных напряжений ua, ub, uc.

Мгновенное выпрямленное напряжение ud  мостового выпрямителя равно разности потенциалов катодной и анодной групп и соответствует ординатам, за­ключенным между верхней и нижней огибающими. Пульсации выпрямленного напряжении ud и тока id  a, при активной нагрузке ключ К замкнут происходят с шестикратной частотой по отношению к частоте сети.

Форма выпрямленного тока и тока через диод показана на рис. 2.2, в, г, при ак­тивной нагрузке выпрямителя rв и работе выпрямителя на обмотку возбуждения (см. рис. 2.2 в, штриховая линия). Обратное напряжение имеет форму, как в нулевой схеме, но в два раза меньшей амплитуды. Ток в каждой фазе вторичной обмотки трансформатора протекает дважды за пе­риод в противоположных направлениях. В связи с этим в мостовой схеме отсутствует вынужденное подмагничивание сердечника трансформатора.

Форма первичного тока находится из условия компенсации магнитодвижущих сил (МДС) первичной и вторичной обмоток при соединении первичной обмотки в звезду. Выпрямитель при этом на­гружен на обмотку возбуждения.

Расчетные соотношения для мостовой схемы нахо­дятся из общих формул (2.1 – 2.8), при m = 6. При сравнительном анализе трехфазной нулевой и мостовой схем можно сделать те же выводы, что и для соответствующих однофазных схем.

Улучшение гармонического состава кривых выпрямленного напряжения и сете­вого тока достигается в многофазных схемах выпрямления, используемых для машин большой мощности. На практике широко применяют двенадцатифазные схемы вы­прямления (m = 12), образованные последовательным или параллельным соединением двух мостовых выпрямителей.


С этим читают