Как работают импульсные преобразователи напряжения (27 схем)

Функциональные схемы по типу цепи управления

Импульсный стабилизатор напряжения представляет собой систему автоматического регулирования. Задающим параметром для контура регулирования служит опорное напряжение, которое сравнивается с выходным напряжением стабилизатора. В зависимости от сигнала рассогласования устройство управления изменяет соотношение длительностей открытого и закрытого состояния ключа.

В представленных ниже структурных схемах можно выделить три функциональных узла: ключ (1), накопитель энергии (2) (который иногда называют фильтром) и цепь управления. При этом ключ (1) и накопитель энергии (2) вместе образуют силовую часть стабилизатора напряжения, которая вместе с цепью управления образуют контур регулирования. По типу цепи управления различают три схемы.

С триггером Шмитта


Структурная схема стабилизатора напряжения с триггером Шмитта

Дополнительные сведения: Триггер Шмитта

Стабилизатор напряжения с триггером Шмитта называется также релейным или стабилизатором с двухпозиционным регулированием. В нём выходное напряжение сравнивается с нижним и верхним порогами срабатывания триггера Шмитта (4 и 3) посредством компаратора (4), который обычно является входной частью триггера Шмитта. При замкнутом ключе (1) входное напряжение поступает на накопитель энергии (2), выходное напряжение нарастает, и после достижения верхнего порога срабатывания Umax триггер Шмитта переключается в состояние, размыкающее ключ (1). Накопленная энергия расходуется в нагрузке, при этом напряжение на выходе стабилизатора спадает, и после достижения нижнего порога срабатывания Umin триггер Шмитта переключается в состояние, замыкающее ключ. Далее описанный процесс периодически повторяется. В результате на выходе образуется пульсирующее напряжение, размах пульсаций которого зависит от разности порогов срабатывания триггера Шмитта.

Такой стабилизатор характеризуются сравнительно большой, принципиально неустранимой пульсацией напряжения на нагрузке и переменной частотой преобразования, зависящей как от входного напряжения, так и от тока нагрузки.

С широтно-импульсной модуляцией

Структурная схема стабилизатора напряжения с ШИМ

Дополнительные сведения: Широтно-импульсная модуляция

Как и в предыдущей схеме, в процессе работы накопитель энергии (2) или подключён к входному напряжению, или передаёт накопленную энергию в нагрузку

В результате на выходе имеется некоторое среднее значение напряжения, которое зависит от входного напряжения и скважности импульсов управления ключом (1). на операционном усилителе (4) сравнивает выходное напряжение с опорным напряжением (6) и усиливает разность, которая поступает на модулятор (3)

Если выходное напряжение меньше опорного, то модулятор увеличивает отношение времени открытого состояния ключа к периоду тактового генератора (5). При изменении входного напряжения или тока нагрузки скважность импульсов управления ключом изменяется таким образом, чтобы обеспечить минимальную разность между выходным и опорным напряжением.

В таком стабилизаторе частота преобразования не зависит от входного напряжения и тока нагрузки и определяется частотой тактового генератора.

С частотно-импульсной модуляцией

Дополнительные сведения: Частотно-импульсная модуляция

При этом способе управления импульс, открывающий ключ, имеет постоянную длительность, а частота следования импульсов зависит от сигнала рассогласования между опорным и выходным напряжениями. При увеличении тока нагрузки или снижении входного напряжения частота увеличивается. Управление ключом может осуществляться, например, с помощью моностабильного мультивибратора (одновибратора) с управляемой частотой запуска.

Релейный принцип работы

Функционирование импульсного стабилизатора напряжения в данном случае выглядит следующим образом: на транзистор, что выступает в роли ключа, подается постоянное напряжение. Он открывается. Напряжение на выходе повышается. Сравнивающее устройство начинает определять сигнал разности. При достижении определенного верхнего предела меняется состояние триггера. В результате осуществляется коммутация регулирующего транзистора на отсечку. После этого напряжение на выходе будет уменьшаться. В случае, если оно дойдет до нижнего предела, то сравнивающее устройство опять определит сигнал разности, поменяется состояние триггера. Транзистор снова войдет в насыщение. Разность потенциалов начнет повышаться, как и напряжение на выходе. Будет сразу же запущен процесс выравнивания.

Настраивается предел срабатывания для триггера благодаря корректировке амплитуды значений напряжения на используемом сравнивающем устройстве. И так постоянно будет идти замкнутый цикл. Импульсный стабилизатор напряжения тока релейного типа обладает повышенной скоростью, что отличает его от приборов, в которых используется широтное и частотное регулирования. Данный факт является их самым значительным преимуществом. Но такой подход всегда обеспечивает импульсы на выходе прибора. Это недостаток.

Лучшие релейные стабилизаторы напряжения

В настоящее время на рынке стабилизаторов есть достаточно много игроков, больших и не очень фирм производителей, у каждой при этом есть несколько линеек моделей, с разной выходной мощностью и функциями, поэтому назвать какие-то определенные удачные продукты непросто.

Но конечно же, изучая опыт и отзывы своих коллег, поставщиков и клиентов, можно выделить несколько наиболее оптимальных производителей в различных категориях потребительских свойств, на примере моделей на 5 кВт — кВА в частности:

НАЧАЛЬНЫЙ УРОВНЬ

Из самых доступных, недорогих, но при этом достаточно качественных релейных стабилизаторов напряжения советую присмотреться к моделям следующих производителей: Ресанта Quattro Elementi. Особенно удачно эти стабилизаторы применяются на даче, садовом участке или в гараже, а также при питании бытовой техники или электроинструмента.

Стабилизаторы этих производителей нередко ставят в квартирах и коттеджах, котельных и других местах, где важна надежность, как стабилизации, так и защиты электроприборов от негативных влияний некачественных параметров электрического тока.

 Недорогой и качественный релейный стабилизатор РЕСАНТА ACH-5000/1-Ц (~ 5400 рублей)

Quattro elementi stabilia 5000 — Еще один доступный релейный стабилизатор с хорошими отзывами (~6000 рублей)

ЦЕНА / КАЧЕСТВО

По сочетанию цена/качество, с упором на надежность, качество и функции, вроде более широкого диапазона стабилизации, доп.защиты и фильтров, наиболее интересными производителями релейных стабилизаторов, по мнению большого числа потребителей, являются: Энергия и Rucelf следующих моделей:

 Одна из самых удачных моделей релейных стабилизаторов, сочетает в себе доступную стоимость и высокую надежность RUCELF СтАР-5000 (6500 рублей)

 Энергия ACH 5000 — релейный стабилизатор Российского производства, в компактном, переносном исполнени, 7 ступеней стабилизации. (~7000 рублей)

ПРОДВИНУТЫЕ МОДЕЛИ

Наиболее дорогие и продвинутые релейные стабилизаторы, обладающие максимальным количеством опций, высокой степенью стабилизации и другими характеристиками высокого уровня, которые рассчитаны на установку в более ответственные, требовательные к качеству, надежности и точности параметров напряжения места, например, на производстве, в кафе, магазине и т.д. выпускают производители: Lider, Энергия, Uniel

 Энергия Voltron 5000 — профессиональный высококачественный релейный стабилизатор напряжения, с очень хорошими характеристиками и дополнительными   функциями. (~9000 рублей)

 Uniel-rs-1-5000ls — релейный стабилизатор с широчайшим диапазоном стабилизации, высокой скоростью реагирования, по своим характеристикам сравнивается с … (~12000 рублей)

Считаете, что релейный прибор не то, что вы ищите, обязательно изучите особенности стабилизаторов другого типа и читайте обзоры моделей для разных типовых случаев, всё это и многое другое ждёт вас в ближайших статьях, следите за выходом новых материалов, подписывайтесь на нашу группу ВКонтакте.

Стабилизаторы тока на микросхемах

Применение такой элементной базы несколько увеличивает себестоимость проекта. Однако использование качественных микросхем обеспечивает хорошие стабилизационные характеристики в широком диапазоне входных параметров. С учетом хороших показателей эффективности можно рассчитывать на небольшое потребление электроэнергии.

TL431

В левой части рисунка показана схема типового подключения микросхемы TL 431 (DA1). Отмечена главная функция – поддержание напряжения 2,5 V на контрольном резисторе.


Такая конструкция пригодна для последовательного подключения нескольких десятков светодиодов суммарной мощностью 12-14 Вт. Силовые компоненты подбирают с учетом реальных потребностей. В представленном примере падение напряжения на транзисторе составит 25-35V. Рассеивается не более 1,75 Вт. В таком варианте радиатор не требуется.

Резистор на входе (R3) предотвращает повреждение конденсатора при включении блока в сеть. Ток в нагрузке ограничивает безопасным уровнем сопротивление R3. При выборе светодиодов специалисты рекомендуют делать запас по мощности, чтобы продлить срок службы одновременно с уменьшением тепловыделения.

LM7805, LM7812

В представленном ниже варианте схемотехники следует повысить входное напряжение. Его уровень должен быть больше на 2,5-3V, чем номинал стабилизации данной микросхемы.

В примере показан стабилизатор напряжения постоянного тока, который рассчитан на 9-11 Вт подключаемой нагрузки.

LM317

При подключении нагрузки 28-30 Вт эта микросхема обеспечивает стабилизацию тока 100 мА. Диапазон входного напряжения – от 207 до 240 V.

В таблице на рисунке представлены значения регулировочного резистора, соответствующие определенным выходным параметрам.

При выборе подходящей схемы следует учесть в комплексе:

  • минимальные и максимальные напряжения в цепи питания;
  • точность стабилизации;
  • эффективность устройства;
  • сложность изготовления определенной конструкции собственными руками;
  • стоимость комплектующих деталей, расходных материалов.

Заранее рекомендуется подготовить перечень инструментов, приспособлений, измерительных приборов. Аккуратное выполнение рассмотренных выше инструкций поможет создать функциональный стабилизатор без ошибок и лишних затрат.

Шим регулятор большой мощности

Такой ШИМ регулятор может быть применен для управления мощными нагрузками , в том числе и низковольтными электродвигателями.Сегодня постараюсь сделать небольшой поверхностный обзор этого чудо-модуля и показать основные части и принцип работы.

Произведено естественно в Китае, жаль , что на плате затерты многие компоненты, хотя итак понятно что к чему.

Шим регулятор обеспечивает плавную регулировку мощности , диапазон выходных напряжений 10-50 Вольт , что проверялось неоднократно. Максимальный ток до 60 Ампер, а это дает возможность использовать такую плату для управления (регулировки) оборотов электрокаров, скутеров или велосипедов. Модуль как раз специально заточен для таких целей из-за наличия гасящих диодов, которые предназначены для защиты полевых ключей от самоиндукции двигателя.  Для того кто захочет приобрести данный товар, вот ссылка

  • На плате 12 трехвыводных компонента  в  корпусе ТО220, у каждого свой теплоотвод, из них 4 являются диодами , а остальные 8 – полевые транзисторы .
  • Китайские инженеры затерли очень многое на плате, в том числе и полевики (точнее они вообще без маркировки).

Имеется задающий генератор, на выходе которого установлен делитель. Таким образом получено два аналогичных сигнала, которые поступают на двайвера, а их две.

Каждый драйвер управляет линейкой полевиков ( 4 шт) в итоге силовые выводы всех полеввиков включены параллельно. Схема очень продуманная, но одного китайцы не учли – не имеется защита от кз на выходе.

Вообще это уже второй подобный модуль у меня, в первом варианте был установлен низкоомный шунт – беседа с продавцом подтвердила, что это токовый шунт, с которого берутся показания для системы защиты, т.

е фиксируется падение именно на этом шунте, но когда плата доехала я был в шоке – шунт имеется, но на плате попросту не установлены компоненты схемы защиты , таким образом шунт играет роль банальной перемычки, в итоге эта плата сгорела в один прекрасный миг.

А та плато , о которой сегодня беседуем, пока жива и здорова, но опять же – очень уязвима из-за отсутствия защит. По схематической части все стандартно – мощный шим регулятор оборотов для движка, важно не превысить максимально допустимое входное напряжение (50 Вольт макс) а то сгорит схема стабилизатора, который обеспечивает питание для шим микросхемы и драйвера

Регулировать яркость галогенных ламп и других пассивных нагрузок тоже можно без проблем. Проверял регулятор под нагрузкой в 30 Ампер , ключи еле -еле теплые , не смотря на маленькие теплоотводы, хотя это стоило ожидать, ведь шим управление гораздо эффективнее, чем линейное.

Ещё раз укажу ссылку на генератор

Пример стабилизации напряжения на LM317

Допустим надо подать на микросхему 12 вольт и отрегулировать его до 5. Исходя из формулы, приведенной выше, для того, чтобы LM317 выдал 5 вольт и выступал в роли регулятора напряжения, значение R2 должно быть 720 Ом.


Соберите указанную выше схему. Затем с помощью мультиметра проверьте выходное напряжение, поместив его щупы на конденсатор емкостью 1 мкФ. Если схема собрана правильно, то на её выходе будет около 5 вольт.

Теперь замените резистор R2 и установите на его место номинал со значением 1,5 кОм. Теперь на выходе должно быть около 10 В. Это преимущество этих миросхем. Вы можете настроить их на любое напряжение в пределах диапазона, указанного в его характеристиках.

Принцип работы

Соберем простой стабилизатор напряжения используя LM317 согласно схеме.

Подключим на вход Vin источник постоянного питания. Как уже было написано ранее, к этим контактам надо подать входное напряжение, которое микросхема затем понизит в зависимости от нагрузки. Оно должно быть больше, чем на выходе.

Допустим используя эту схему надо получить 5 В нагрузке. Следовательно, на вход Vin надо подать больше чем 5 вольт. Как правило, если микросхема LM317, не является регулятором с малым падением надо, чтобы входное напряжение примерно на 2 вольта было выше выходного. Поскольку мы хотим 5 вольт на выходе, мы подадим к регулятору 7 вольт.

Контакт Adj позволяет отрегулировать напряжение на выходе до уровня, который мы хотим.Рассчитаем, какое значение сопротивления R2 даст на выходе устройства 5 вольт. Используя формулу для выходного напряжения можно узнать значение сопротивления R2.

Так как сопротивление R1 равно 240 Ом, а выходное напряжение равно 5 В, то R2 согласно формуле будет равно 720 Ом.  Таким образом, при значении R2 =720 Ом, LM317 будет выдавать 5 В, при подаче на её вход более 5 Вольт.

Драйвер тока

Драйвер тока (LED Driver) поддерживает ток и напряжение в цепи нагрузки в независимости от поданного на него постоянного питания. Известно, что светодиод является полупроводниковым прибором, который следует запитать током, указанным в характеристиках светодиода.

Используя схему стабилизации как показано в DataSheet  можно собрать на LM317 простую схему драйвера тока.

Для ее работы зная потребляемый светодиодом ток, необходимо подобрать сопротивление подстроечного резистора R1. У маломощных светодиодов ток потребления составляет порядка 20 мА или 0,02 А. Для подбора необходимого сопротивления используют формулу, где Iout это ток на выходе микросхемы, необходимый для питания светодиодов.

Используя формулу, получаем значение номинала резистора с сопротивлением 62.5 Ома. Для избежания перегрева микросхемы подбирают необходимую мощности резистора по формуле.

Собрав схему и подав питание, получают простейший драйвер стабилизации тока для светодиодов.  Светодиод будет включаться, с требуемой яркостью, которая не будет зависеть от поданного постоянного питания на вход микросхемы.

Номинал необходимого резистора R1, можно подобрать, используя обычный подстроечный проволочный резистор на сопротивление 0.5 кОм. Для этого сначала проверяют его сопротивление между среднем и любым из крайних выводов. С помощью мультиметра, вращая регулирующий стержень,  добиваемся значения сопротивления 500 Ом, чтобы не сжечь подключенный светодиод при включении.

Затем подключают в схему со светодиодом. Чтобывыбрать подходящий номинал резистора, после подачи питания изменяют сопротивление подстроечного резистора до требуемого тока светодиода.

Онлайн-калькулятор

Для расчета параметров радиоэлементов в схемах с LM317 в сети интернет существует множество онлайн-калькуляторов:

  • для расчета резистора R2, при известном выходном напряжении и сопротивлении резистора R1;
  • для вычисления напряжения на выходе стабилизатора, при известном сопротивлении двух резисторов (R1 и R2);
  • для расчета сопротивления и мощности резистора, при известном значении силы тока на выходе микросхемы и др.

Устройства средней сложности

Среднюю сложность изготовления имеют драйверы для светодиодов на 220В. Много времени может занять их настройка, требующая опыта по наладке. Такой драйвер извлечь можно из светодиодных ламп, прожекторов и светильников с неисправной светодиодной цепью. Большинство драйверов также возможно доработать, узнав модель ШИМ-контроллера преобразователя. Параметры на выходе обычно задаются одним или несколькими резисторами. В datasheet указывается уровень сопротивления, необходимый для получения нужного тока. Если установить регулируемый резистор, то на выходе количество Ампер будет настраиваемым (но без превышения указанной номинальной мощности).

Высокой популярностью на Китайских сайтах в 2016 году пользовался универсальный модуль XL4015. По своим характеристикам он подходит для подключения светодиодов с высокой мощностью (до 100 Ватт). Стандартный вариант корпуса данного модуля припаян к плате, выполняющей функции радиатора. Чтобы улучшить охлаждение XL4015, схема стабилизатора тока должна быть доработана с установкой радиатора на корпус устройства.

Многие пользователи просто ставят радиатор сверху, однако эффективность такой установки довольно низкая. Систему охлаждения лучше всего располагать внизу платы, напротив пайки микросхемы. Для оптимального качества ее можно отпаять и установить на полноценный радиатор, используя термопасту. Провода при этом потребуется удлинить. Дополнительное охлаждение можно установить и для диодов, что значительно повысит эффективность работы всей схемы.

Среди драйверов наиболее универсальным считается регулируемый драйвер. В цепи в данном случае устанавливается переменный резистор, который задает количество ампер на выходе. Эти характеристики обычно указываются в следующих документах:

  • в спецификации на микросхему;
  • в datasheet;
  • в типовой схеме включения.

Без добавочного охлаждения микросхемы такие устройства выдерживают 1-3 А (в соответствии с моделью ШИМ-контроллера). Слабое место таких драйверов — нагрев диода и дросселя. Выше 3 А потребуется охлаждение мощного диода и ШИМ-контроллера. Дроссель при этом заменяют более подходящим либо перематывают толстым проводом.

Особенности работы

Работа этого устройства считается достаточно простой. Это устройство способно регулировать ток ступенчато. В результате этого при подключении обмотки ток будет увеличиваться или уменьшаться на определенную величину. Иногда их уровень может не соответствовать норме. Подобное последовательное срабатывание может вызывать дополнительные скачки напряжения.

Если детально изучить его работу, тогда можно будет понять, что реле быстро переключает обмотки. В результате этого скачки напряжения считаются незначительными. Их заметность может возникнуть в результате скачков входного тока. Если вы используете высокоточное оборудование, тогда техника может выйти из строя. Постоянная подача тока будет практически невозможной.

Если вы посмотрите напряжение и дисплей будет показывать 220 Вольт, тогда возможно вы попали на плохого производителя. Производители могут специально запрограммировать устройство, чтобы оно постоянно показывало 220 Вольт.

Обычно для стабилизации напряжения прибору необходимо тратить до 0,15 секунд. Релейные стабилизаторы также могут прекращать подачу выходного тока. Это может произойти в том случае, когда на входе появляется минимально допустимый ток. Если напряжение стабилизируется, тогда стабилизатор возобновит свою работу. Восстановление тока происходит в течение 0.6 секунд. У нас вы можете прочесть про защиту электропроводки  помощью стабилизатора.

Принцип действия релейного стабилизатора напряжения

В первую очередь, в стабилизаторе замеряется входящее напряжение, далее, в зависимости от полученных результатов, с платы управления посылается сигнал на открытие того или иного реле, соответственно электрический ток с одной из отпаек автотрансформатора, уменьшенный или увеличенный до нужного значения, поступает на выводы стабилизатора, к потребителю.

В качестве примера работы стабилизатора, давайте примем, что каждый отвод автотрансформатора даёт +/- 15 Вольт изменения напряжения, работает это следующим образом:

— Если напряжение в сети 220В – оно сразу передаётся к потребителю, коэффициент трансформации при этом 1. Соответственно в пределах от 205В до 235В (220В +/-15В), напряжение на выход стабилизатора, будет передаваться без изменений.

— Как только входящее напряжение опускается до значения, меньшего чем 205 Вольт, задействуется первая вторичная обмотка автотрансформатора, с коэффициентом трансформации 1,075, тем самым на выходе снова получается 220 В (205*1,075). В этот момент отвечающее за этот отвод автотрансформатора рале замыкается, пуская ток на выходные контакты стабилизатора, а все другие размыкаются.

Далее, пока напряжение не упадет еще на 15В т.е. до 190В (205В-15В), будет продолжать действовать эта вторичная обмотка с тем же коэффициентом трансформации, таким образом, если в сети напряжение упадет до 196В (граница переключения на следующий режим), на выходе получается 211В (196*1,075).

— Когда входящее напряжение опускается ниже 190В, срабатывает очередное реле, а предыдущее размыкается, тем самым включается следующая вторичная обмотка автоматического трансформатора, с коэффициентом трансформации уже 1,15 и напряжение на выходе опять становится 220В (196*1.15) и так далее, каждые 15В переключается обмотка до, допустим, 145В – после чего стабилизатор уходит в защиту.

— Если же наоборот, напряжение в сети возрастает выше 235В, с помощью соответствующего реле задействуется понижающая вторичная обмотка, с коэффициентом трансформации 0,94 и опять же напряжение в сети выравнивается до требуемых 220В (235*0,94).

Думаю, теперь, принцип действия релейного стабилизатора вам понятен, теперь давайте рассмотрим какие у стабилизатора этого типа сильные и слабые стороны, в каких сферах его лучше всего применять.

Основные схемы силовой части

По схеме силовой части импульсные стабилизаторы делят обычно на три основных типа: понижающие, повышающие и инвертирующие. Такое разделение сложилось, в частности, в отечественной технической литературе.

Некоторые авторы, рассматривая схемы импульсных преобразователей постоянного напряжения во всём их многообразии, показывают, что число элементарных базовых схем преобразователя можно свести к двум — понижающего типа и повышающего типа. Также отмечается, что другие схемы импульсного преобразователя напряжения (в том числе инвертирующего преобразователя) могут быть получены каскадным соединением этих двух базовых схем[неавторитетный источник?].

В нижеприведённых схемах в качестве ключа S могут использоваться полевой транзистор, биполярный транзистор или тиристор, цепь управления ключом для простоты не показана. Отношение времени замкнутого состояния ключа к сумме длительностей замкнутого и разомкнутого состояний называют коэффициентом заполнения (или рабочим циклом — англ. duty cycle).

Преобразователь с понижением напряжения

Преобразователь с понижением напряжения

Названия в англоязычной литературе — buck converter (step-down converter). Если ключ S замкнут, то диод D закрыт, и через дроссель L течёт нарастающий ток от источника. Когда ключ размыкается, ток дросселя, который не может измениться мгновенно, начинает протекать через диод D, при этом величина тока уменьшается. При достаточной индуктивности ток дросселя не успевает уменьшиться до нуля к началу следующего цикла (режим неразрывных токов) и имеет пульсирующий характер. Поэтому даже при отсутствии конденсатора C напряжение на нагрузке R будет иметь такой же характер с пульсациями, размах которых тем меньше, чем больше индуктивность дросселя. Однако, на практике увеличение индуктивности связано с увеличением габаритов, массы и стоимости дросселя и потерь мощности в нём, поэтому использование конденсатора для уменьшения пульсаций более эффективно. Сочетание элементов L и C в этой схеме часто называют фильтром.

Преобразователь с повышением напряжения

Преобразователь с повышением напряжения

Названия в англоязычной литературе — boost converter (step-up converter). Если ключ S замкнут, то диод D закрыт, и через дроссель L течёт линейно нарастающий ток от источника. Когда ключ размыкается, ток дросселя, который не может измениться мгновенно, начинает протекать через диод D и конденсатор C (заряжая его). К началу следующего цикла практически линейно спадающий ток через конденсатор может уменьшиться до нуля, однако приложенное к нагрузке R напряжение конденсатора почти постоянно — амплитуда пульсаций тем меньше, чем больше ёмкость конденсатора. В отличие от предыдущей схемы, здесь дроссель не является элементом фильтра. Напряжение на нагрузке всегда больше напряжения источника.

Инвертирующий преобразователь

Инвертирующий преобразователь

Название в англоязычной литературе — buck-boost converter (то есть «понижающе-повышающий преобразователь»). Основное отличие от предыдущей схемы состоит в том, что цепь D, R, C подключена параллельно дросселю, а не параллельно ключу. Принцип работы схемы похожий. Если ключ S замкнут, то диод D закрыт, и через дроссель L течёт линейно нарастающий ток от источника. Когда ключ размыкается, ток дросселя, который не может измениться мгновенно, начинает протекать через конденсатор C (заряжая его) и диод D. К началу следующего цикла практически линейно спадающий ток через конденсатор может уменьшиться до нуля, однако приложенное к нагрузке R напряжение конденсатора почти постоянно — амплитуда пульсаций тем меньше, чем больше ёмкость конденсатора (дроссель не является элементом фильтра). Напряжение на нагрузке может быть как больше, так и меньше напряжения источника.

Влияние диода на КПД

Прямое падение напряжения для обычных кремниевых диодов составляет около 0,7 В, для диодов Шоттки — около 0,4 В. Мощность, рассеиваемая в диоде при больших токах, существенно снижает КПД, особенно в стабилизаторах с низким выходным напряжением. Поэтому в таких стабилизаторах диод часто заменяют дополнительным полупроводниковым ключом с низким падением напряжения в открытом состоянии, например, силовым полевым транзистором.

Во всех трёх описанных схемах диод D может быть заменён на дополнительный ключ, замыкаемый и размыкаемый в противофазе к основному ключу.


С этим читают