2 схемы

Как выбрать УЗИП?

Первое, что нужно сделать при выборе УЗИП это определить систему заземления, которая используется в здании.


Система заземления бывает трех типов:

  • TN-S с одной фазой;
  • TN-S с тремя фазами;
  • TN-C или TN-C-S с тремя фазами.

Не менее важно обратить на выдерживаемую температуру при приобретении устройства. Большинство УЗИП рассчитано на работу при температуре до -25

Если в вашем регионе очень холодный климат, и зимы бывают суровыми, тогда электрощит не должен находиться на улице, иначе устройство выйдет из строя.

При выборе УЗИП также необходимо учесть следующие факторы:

  • Значимость защищаемого оборудования;
  • Риск воздействия на объект: местность (город или пригород, равнинная открытая местность), зона с особым риском (деревья, горы, водоем), зона особых воздействий (молниеотвод на расстоянии от здания менее 50 метров, который представляет опасность).

В связи с положением, при котором возникла необходимость установки УЗИП, выбирается подходящий класс (I, II, III).

Также важно учитывать выдерживаемое устройством напряжение. Для устройств I-го класса этот показатель не превышает 4 кВ

Устройство II класса выдерживает уровень напряжения до 2,5 кВ, а устройство III класса до 1,5 кВ.

Еще одним важным параметром при выборе УЗИП является максимальное длительное рабочее напряжение — действующее значение переменного или постоянного тока, которое длительно подаётся на УЗИП. Этот параметр должен быть равен номинальному напряжению в сети. Подробно можно ознакомиться с информацией в стандарте МЭК 61643 — 1, приложение 1.

При подключении УЗИП для защиты оборудования важно учитывать его номинальный постоянный или переменный ток, который может поддаваться нагрузке

Последовательные диодные ограничители

Как говорилось выше, ограничители бывают по максимуму, по минимуму и двухсторонние, которые ограничивают уровень сигнала сверху и снизу. Устройство последовательных диодных ограничителей довольно простое и оно основано на ключевом свойстве полупроводникового диода: в открытом состоянии диод пропускает электрический ток, а в закрытом – электрический ток через диод не проходит.

Последовательные диодные ограничители состоят из диода (VD1), источника смещения (ECM) и сопротивления нагрузки (R1). Различие состоит в том, как подключен диод: в ограничителе по минимуму диод включен в прямом направлении, а в ограничителе по максимуму – в обратном направлении.

Рассмотрим принцип работы ограничителя по минимуму. При значении входного напряжения UВХ меньше, чем напряжение смещения ЕСМ, диод VD1 будет находиться в закрытом состоянии и напряжение на выходе UВЫХ будет соответствовать напряжению смещения. Как только входное напряжение превысит напряжение смещения, диод откроется и через него начнёт проходить электрический ток, а напряжение на выходе будет соответствовать входному напряжению.

Схема и эпюры напряжения последовательного ограничителя по минимуму.

Принцип работы ограничителя по максимуму состоит в следующем. При значении входного напряжения UВХ меньше напряжения смещения диод VD1 находится в открытом состоянии и напряжение на выходе UВЫХ будет равным напряжению смещения. Как только входное напряжение превысит значение напряжения смещения, диод откроется и выходное напряжение будет равным входному напряжению.

Схема и эпюры напряжения последовательного ограничителя по максимуму.

Для ограничения сигналов сверху и снизу используются двухсторонние ограничители, которые чаще всего состоят из двух последовательно включённых односторонних ограничителей.

Схема двухстороннего последовательного ограничителя и эпюры напряжения.

Принцип работы двухстороннего ограничителя заключается в следующем. Напряжение источников смещения выбирают так, чтобы в отсутствии входного сигнала диод VD2 был открыт (ЕСМ1 СМ2). Уровень ограничения напряжения по максимуму определяется напряжением смещения ЕСМ2, а уровень ограничения по минимуму – напряжением в точке соединения диодов VD1 и VD2, которое соответствует напряжению отпирания диода VD1. Диод VD1 открывается, когда напряжение на входе превышает величину напряжения ЕСМ1. При этом напряжение на выходе ограничителя примерно равно напряжению на входе, а когда входное напряжение превышает величину ЕСМ2, то диод VD2 закрывается и напряжение на выходе будет равно напряжению ЕСМ2.

Довольно часто вместо предыдущей схемы используется эквивалентная схема двухстороннего ограничителя с общим источником смещения.

Схема двухстороннего последовательного ограничителя с общим источником смещения.

Расчёт данной схемы аналогичен предыдущей, если пересчитать её параметры с помощью следующих соотношений:

R_{1}= \frac {R’_{1} R’_{2}}{R’_{1}+R’_{2}}; R_{2}=\frac {R’_{3} R’_{4}}{R’_{3}+R’_{4}} E_{CM1}= \frac {E R’_{2}}{R’_{1}+R’_{2}}; E_{CM2}=\frac {E R’_{4}}{R’_{3}+R’_{4}}

Технические характеристики ОПС-1

ОПС-1 — серия коммутационных ограничителей импульсных перенапряжений, которые защищают сети от вредоносных импульсов. В конструктивном плане имеют стандартные модули с 18 миллиметровой шириной под установку на монтажный тип рейки. Содержат твердотельные композитные варисторы из карбидового цинка и механизмы, отвечающие за визуальный контроль изнашиваемости варистора и аварийного предохранителя. Благодаря карбиду цинка снижают сопротивление в 1000 раз во время появления на сменном модуле напряжения, значение которого превышает предельно допустимое.

ОПС 1


Каждый ОПС-1 имеет количество модулей от 1 до 4 штук в однофазной и трехфазной сети. Есть класс, номинальное напряжение, рабочее протекторное напряжение (500-1000 вольт), номинальное количество тока ограничителя (5-10 ампер), ток, который разрядник принимает при атмосферном разряде (40-65 килоампер) и напряжение, до которого уменьшается значение при разрыве (от 0,25 до 1,2 киловатт).

Обратите внимание! Бывает четыре класса защиты. Первый класс устройств не применяется в бытовых установках, а нужен только для того, чтобы защитить линию электрической передачи

Второй класс используется, чтобы защитить высоковольтные скачки напряжения, которые вызваны ударом молнии к линии электрической передачи.

Третий класс нужен, чтобы защищать от перенапряжений с низкими сетевыми значениями. Защитные устройства ставятся в бытовом распределительном устройстве. Четвертый класс используется, чтобы защищать электрические устройства, которые чувствительны к импульсным помехам и всплескам в однофазной сети. Они монтируются в распределительном типе щитка, за розеткой в электрокоробке или около защищаемого устройства.

Технические характеристики

Устройство

Первичным и основным элементом, из чего состоит ограничитель перенапряжения, служит варистор, выполняющий роль нелинейного переменного резистора. Конструктивно ОПН состоят из варисторов, размещенных в корпусе, изготовленном из фарфора или высокопрочного полимера. Конструкция ограничителя выполнена с учетом условий, обеспечивающих взрывобезопасность, в случае возникновения токов короткого замыкания. В зависимости от назначения и места установки ОПН могут быть исполнены в различных вариантах. Для ограничителей, используемых для защиты линий электропередач и оборудования промышленных объектов, на крышке корпуса предусмотрен контактный болт для подключения к сети, в комплект ОПН входит изолированная от контакта с землей плита основания.

Устройства, предназначенные для защиты от пиковых импульсов напряжения электрохозяйства квартиры или дачного домика, очень компактны, имеют привлекательный дизайн, а также снабжены устройством для крепления на din-рейку. В зависимости от категории сложности, могут быть обустроены индикацией режимов работы и дистанционным управлением.

Устройство модульного ограничителя перенапряжения предоставлено на фото:

где:

  1. Корпус
  2. Предохранитель
  3. Сменный варисторный модуль
  4. Указатель износа варисторного модуля
  5. Насечки на зажимах

Урок 1. Назначение и принцип действия ОПН

Ограничители перенапряжений нелинейные (ОПН)-электрические аппараты, предназначенные для защиты оборудования систем электроснабжения от коммутационных и грозовых перенапряжений. Основным элементом ОПН является нелинейный резистор – варистор ( varistor, от англ. Vari(able) (Resi)stor – переменное, изменяющееся сопротивление).

Основное отличие материала нелинейных резисторов ограничителей от материала резисторов вентильных разрядников состоит в резко нелинейной вольт-амперной характеристики (ВАХ) и повышенной пропускной способности. Применение в ОПН высоконелинейных резисторов позволило исключить из конструкции аппарата искровые промежутки, что устраняет целый ряд недостатков, присущих вентильным разрядникам.

Основной компонент материала резисторов ОПН – оксид (окись) цинка ZnO. Оксид цинка смешивают с оксидами других металлов – закисью и окисью кобальта, окисью висмута и др. Технология изготовления оксидно-цинковых резисторов весьма сложна и трудоёмка и близка к требованиям при производстве полупроводников – применение химически чистого исходного материала, выполнение требований по чистоте и т. д. Основные операции при изготовлении – перемешивание и измельчение компонентов, формовка ( прессование) и обжиг. Микроструктура варисторов включает в себя кристаллы оксида цинка (полупроводник n – типа) и междукристаллической прослойки ( полупроводник p – типа). Таким образом, варисторы на основе оксида цинка ZnO являются системой последовательно – параллельно включённых p – n переходов. Эти p – n переходы и определяют нелинейные свойства варисторов, то есть нелинейную зависимость величины тока, протекающего через варистор, от приложенного к нему напряжения.

В настоящее время варисторы для ограничителей изготовляются как цилиндрические диски диаметром 28 – 150 мм, высотой 5 – 60 мм (рис 1). На торцевой части дисков методом металлизации наносятся алюминиевые электроды толщиной 0.05-0.30 мм. Боковые поверхности диска покрывают глифталевой эмалью, что повышает пропускную способность при импульсах тока с крутым фронтом.

Рис. 1. Нелинейный резистор – варистор

Диаметр варистора ( точнее — площадь поперечного сечения ) определяет пропускную способность варистора по току, а его высота — параметры по напряжению.


При изготовлении ОПН то или иное количество варисторов соединяют последовательно в так называемую колонку. В зависимости от требуемых характеристик ОПН и его конструкции и имеющихся на предприятии варисторов ограничитель может состоять из одной колонки (состоящей даже из одного варистора) или из ряда колонок, соединённых между собой последовательно/ параллельно.

Для защиты электрооборудования от грозовых или коммутационных перенапряжений ОПН включается параллельно оборудованию (рис. 2 ).

Рис.2

Защитные свойства ОПН объясняются вольт–амперная характеристикой варистора.

Вольт – амперная характеристика конкретного варистора зависит от многих факторов, в том числе от технологии изготовления, рода напряжения — постоянного или переменного, частоты переменного напряжения, параметров импульсов тока, температуры и др.

Типовая вольт- амперная характеристика варистора с наибольшим длительно допустимым напряжением 0.4 кВ в линейном масштабе приведена на рис. 3.

Рис. 3. Вольт – амперная характеристика варистора

На вольт – амперной характеристике варистора можно выделить три характерных участка: 1) область малых токов; 2) средних токов и 3) больших токов. Область малых токов – это работа варистора под рабочим напряжением, не превышающим наибольшее допустимое рабочее напряжение. В данной области сопротивление варистора весьма значительно. В силу неидеальности варистора сопротивление хотя и велико, но не бесконечно. поэтому через варистор протекает ток, называемый током проводимости. Этот ток мал — десятые доли миллиамперметра.

При возникновении грозовых или коммутационных импульсов перенапряжений в сети варистор переходит в режим средних токов. На границе первой и второй областей происходит перегиб вольт – амперной характеристики, при этом сопротивление варистора резко уменьшается (до долей Ома). Через варистор кратковременно протекает импульс тока, который может достигать десятков тысяч ампер. Варистор поглощает энергию импульса перенапряжения, выделяя затем её в виде тепла, рассеивая в окружающее пространство. Импульс перенапряжения сети “ срезается” (рис. 4).

Рис. 4

В третьей области ( больших токов) сопротивление варистора снова резко увеличивается. Эта область для варистора является аварийной.

Устройство и принцип действия

Ограничитель перенапряжения является безыскровым разрядником.

Устройство ограничителя перенапряжения

Основной элемент ОПН — варистор ( varistor, от англ. Vari(able) (Resi)stor — переменное, изменяющееся сопротивление). Основная активная часть ОПН состоит из  последовательного набора варисторов, соединенных последовательно в «колонку». В зависимости от требуемых характеристик ОПН и его конструкции ограничитель может состоять из одной колонки или из ряда колонок, соединённых  последовательно либо параллельно. Отличие материала варисторов ОПН от материала резисторов вентильных разрядников состоит в том, что у нелинейных резисторов ограничителей перенапряжения присутствует повышенная пропускная способность, а также высоконелинейная вольт-амперная характеристика (ВАХ), благодаря которой возможно непрерывное и безопасное нахождение ОПН под напряжением, при котором обеспечивается высокий уровень защиты электрооборудования. Данные качества позволили исключить из конструкции ОПН искровые промежутки.

Материал нелинейных резисторов ОПН состоит в основном из оксида (окиси) цинка — ZnO и оболочки в виде глифталевой эмали, повышающей пропускную способность варистора. В процессе изготовления оксид цинка смешивается с оксидами других металлов. Варисторы на основе оксида цинка являются системой, состоящей из последовательно и параллельно включённых p – n переходов. Именно эти p – n переходы определяют нелинейность ВАХ варистора.

ОПН  конструктивно представляет собой колонку варисторов, заключенных в высокопрочный полимерный корпус из высокомолекулярного каучука (в случае полимерной изоляции прибора), либо колонку варисторов, прижатую к боковой поверхности стеклопластиковой трубы, расположенной внутри фарфора (в случае фарфоровой изоляции). В ОПН с полимерной изоляцией  пространство между стеклопластиковой трубой и колонкой варисторов заполняется низкомолекулярным каучуком , а сама стеклопластиковая труба имеет расчетное количество отверстий для обеспечения взрывобезопасности конструкции при прохождении токов короткого замыкания. У ограничителей перенапряжений с фарфоровой изоляцией на торцевых сторонах покрышки располагают мембраны и герметизирующие резиновые уплотнительные кольца, а на фланцах устанавливают специальные крышки с выхлопными отверстиями. На крышке ограничителя перенапряжений имеется контактный болт для подключения к токоведущей шине. ОПН снабжён изолированной от земли плитой основания. Внутренняя стеклопластиковая труба, мембраны и крышки обеспечивают взрывобезопасность конструкции при прохождении токов короткого замыкания.

Принцип действия

Защитное действие ограничителя перенапряжений обусловлено тем, что появление опасного для изоляции перенапряжения, вследствие высокой нелинейности резисторов через ограничитель перенапряжений протекает значительный импульсный ток, в результате чего величина перенапряжения снижается до уровня, безопасного для изоляции защищаемого оборудования.

В нормальном рабочем режиме ток через ограничитель имеет емкостный характер и составляет десятые доли миллиампера. Но при возникновении перенапряжений резисторы ОПН переходят в проводящее состояние и ограничивают дальнейшее нарастание перенапряжения до уровня, безопасного для изоляции защищаемой электроустановки. Когда перенапряжение снижается, ограничитель вновь возвращается в непроводящее состояние.

Вольт-амперная характеристика ограничителя состоит из 3 участков:

  1. – область малых токов;
  2. – область средних токов;
  3. – область больших токов.

Вольт-амперная характеристика ОПН.

В первой области варисторы работают под рабочим напряжением, не превышающим наибольшее допустимое рабочее напряжение (сопротивление варисторов велико, через них протекает очень малый ток утечки).  В режим средних токов варистор переходит при возникновении перенапряжения в сети. При этом на границе 1 и 2 областей происходит перегиб ВАХ, сопротивление варисторов существенно уменьшается и через них протекает кратковременный импульс тока. Варистор поглощает энергию импульса и рассеивает её в окружающее пространство в виде тепла. За счёт поглощения энергии, импульс перенапряжения резко падает. Третья область для ограничителя является аварийной, сопротивление варисторов в ней вновь резко возрастает.

Как определить тип системы заземления

Для определения типа системы заземления нужно рассмотреть проводники PEN, то есть как они разделены. Если все готово, проводка похожа на систему TN-C-S. В этом случае для трехфазной цепи пять главных проводов выходят из основного распределительного щитка дома, а для однофазной цепи используются только три провода. PEN-проводники разделяются на два компонента: PE и N.

Обратите внимание! Если он не разделен, проводка будет работать в соответствии с системой TN-C: с 4 проводами от трехфазной системы и 2 проводами от однофазной системы, идущими от распределительного щита. Основываясь на описанных принципах, можно легко определить тип системы заземления

Во всех случаях, когда система TN-C используется в частных домах, рекомендуется перенести ее на схему TN-C-S, которая является более перспективной и безопасной

Основываясь на описанных принципах, можно легко определить тип системы заземления. Во всех случаях, когда система TN-C используется в частных домах, рекомендуется перенести ее на схему TN-C-S, которая является более перспективной и безопасной.

Что такое УЗИП и для чего оно нужно?

Широкое распространение получили УЗИП с быстросъемным креплением для установки на DIN-рейку


Ограничитель перенапряжения в электроустановках напряжением до 1 кВ называют устройством защиты от импульсных перенапряжений — УЗИП. Устройства защиты от импульсных перенапряжений — как раз и призваны защитить электрооборудование от подобных ситуаций. Они служат для ограничения переходных перенапряжений и отвода импульсов тока на землю, снижения амплитуды перенапряжения до уровня, безопасного для электрических установок и оборудования. УЗИП применяются как в гражданском строительстве, так и на промышленных объектах.

Основной российский документ, определяющий, что такое УЗИП, это ГОСТ Р 51992-2002, «Устройства для защиты от импульсных перенапряжений в низковольтных силовых распределительных системах».

УЗИП призваны обеспечить защиту от ударов молнии в систему молниезащиты здания (объекта) или воздушную линию электропередач (ЛЭП), защитить высокочувствительное оборудование и технику от импульсных перенапряжений и коммутационных бросков питания. Широкое распространение получили УЗИП с быстросъемным креплением для установки на DIN-рейку.

Аппараты защиты от импульсных напряжений включают в себя устройства нескольких категорий:

Тип устройства Для чего предназначено Где применяется
I класс Для защиты от непосредственного воздействия грозового разряда. Защищают от импульсов 10/350 мкс: попадание молнии в систему внешней молниезащиты и попадание молнии в линию электропередач вблизи объекта. Амплитуда импульсных токов с крутизной фронта волны 10/350 мкс находится в пределах 25-100 кА, длительность фронта волны достигает 350 мкс. Устанавливаются на вводе питающей сети в здание (ВРУ/ГРЩ). Данными устройствами должны укомплектовываться вводно- распределительные устройства административных и промышленных зданий и жилых многоквартирных домов.
II класс Обеспечивают защиту от перенапряжений, вызванных коммутационными процессами, а также выполняющие функции дополнительной молниезащиты. Предназначены для защиты от импульсов 8/20 мкс. Они защищают от ударов молнии в ЛЭП, от переключений в системе электроснабжения. Амплитуда токов — 15-20 кА. Монтируются и подключаются к сети в распределительных щитах. Служат дополнительной защитой от импульсов, которые не были полностью нейтрализованы УЗИП I класса.
III класс Для защиты от импульсных перенапряжений, вызванных остаточными бросками напряжений и несимметричным распределением напряжения между фазой и нейтралью. Также работают в качестве фильтров высокочастотных помех. Предназначены для защиты от остаточных импульсов 1,2/50 мкс и 8/20 мкс импульсов после УЗИП I и II классов. Используются для защиты чувствительного электронного оборудования, поблизости от которого и устанавливаются. Характерные области применения — ИТ- и медицинское оборудование. Также актуальны для частного дома или квартиры — подключаются и устанавливаются непосредственно у потребителей.

Конструкция УЗИП постоянно совершенствуется, повышается их надежность, снижаются требования по техническому обслуживанию и контролю.

Конструкция и работа

Конструктивно ограничители перенапряжений выполнены в виде блока последовательно соединенных оксидно-цинковых варисторов, заключенного в полимерную цельнолитую покрышку.

Защитное действие ограничителей обусловлено тем, что при возникновении перенапряжения в сети через ограничители протекает значительный импульсный ток вследствие высокой нелинейности варисторов, в результате чего величина перенапряжения снижается. Для присоединения датчика тока и регистратора срабатывания ОПН устанавливается на изолирующее основание.

Датчик тока и регистратор срабатывания поставляются по требованию заказчика.

Скачать документацию

  •  Техническое описание ограничителей перенапряжений нелинейных с полимерной внешней изоляцией на классы напряжения 110-220 кВ (551.3 kB)
  •  Руководство по эксплуатации ограничителей перенапряжений нелинейных на классы напряжения 110 и 220 кВ (304.6 kB)
  •  Руководство по эксплуатации ограничителей перенапряжений нелинейных на классы напряжения 110, 150, 220 кВ (239.6 kB)
  •  Руководство по эксплуатации ограничителей перенапряжений нелинейных на класс напряжения 220 кВ (186.9 kB)

Как работает УЗИП?

УЗИП устраняет перенапряжения:

  • Несимметричный (синфазный) режим: фаза — земля и нейтраль — земля.
  • Симметричный (дифференциальный) режим: фаза — фаза или фаза — нейтраль.

В несимметричном режиме при превышении напряжением пороговой величины устройство защиты отводит энергию на землю. В симметричном режиме отводимая энергия направляется на другой активный проводник.

Схема подключения УЗИП в однофазной и трехфазной сети системы TN-S. В системе заземления TN-C применяется трехполюсное УЗИП. В нем нет контакта для подключения нулевого проводника.

Схема подключения УЗИП в однофазной и трехфазной сети системы TN-S. В системе заземления TN-C применяется трехполюсное УЗИП. В нем нет контакта для подключения нулевого проводника

В разрядниках при воздействии грозового разряда в результате перенапряжения пробивает воздушный зазор в перемычке, соединяющей фазы с заземляющим контуром, и импульс высокого напряжения уходит в землю. В вентильных разрядниках гашение высоковольтного импульса в цепи с искровым промежутком происходит на резисторе.

УЗИП на основе газонаполненных разрядников рекомендуется к применению в зданиях с внешней системой молниезащиты или снабжаемых электроэнергией по воздушным линиям.

В варисторных устройствах варистор подключается параллельно с защищаемым оборудованием. При отсутствии импульсных напряжений, ток, проходящий через варистор очень мал (близок к нулю), но как только возникает перенапряжение, сопротивление варистора резко падает, и он пропускает его, рассеивая поглощенную энергию. Это приводит к снижению напряжения до номинала, и варистор возвращается в непроводящий режим.

УЗИП имеет встроенную тепловую защиту, которая обеспечивает защиту от выгорания в конце срока службы. Но со временем, после нескольких срабатываний, варисторное устройство защиты от перенапряжений становится проводящим. Индикатор информирует о завершении срока службы. Некоторые УЗИП предусматривают дистанционную индикацию.


С этим читают